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Estimating error uncertainties arising in production parts is not a well-understood p
cess. An approach to estimate these uncertainties was developed in this study. M
tool error components were measured on a three-axis vertical machining center. Mu
parts were produced on the measured machining center then measured on a coor
measuring machine. Uncertainty models for hole-center to hole-center lengths an
thogonalities were developed using measured machine tool errors. These estimat
certainties were compared against measured uncertainties. The main conclusion fro
study is that the Law of Propagation of Uncertainties can be used to estimate mach
uncertainties.@DOI: 10.1115/1.1645876#
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1 Introduction
Given a particular machine tool, estimating beforehand the

rors in features for the parts produced by that machine is n
clearly defined process. Although there are general guides fo
porting uncertainties in experiments~see ISO@1#, Taylor and
Kuyatt @2#, American National Standards Institute@3#! to the au-
thors’ knowledge there have been no published practical c
studies on how to estimate uncertainties of errors of machined
features in production environments. This paper describes a
study in which a part was specified and given to a product
machine shop with an order to make twenty-one copies of the
on the same machine. The part designed had drilled and m
holes and a circular slot~see Fig. 1!. The shop manager indepen
dently selected a three-axis machining center on the shop floo
the production job. With shop assistance the error componen
the machine tool were measured multiple times using a laser
bar ~LBB! but due to shop rules the machine metrology and p
manufacturing could only be accomplished in business day in
ments with a maximum of five business days allowed for
entire project. An error model of the machining center was de
oped and axis error uncertainties estimated by using the prop
tion of error formula from the ISO Guide@1#. An analytic formula
was developed and then used to estimate the variation in dist
between selected features, such as hole centers. To estimat
certainties of orthogonality of peripheral hole centers, it was
termined that a Monte Carlo technique worked best, where a
tailed explanation is found in Section 3.5. All twenty-one pa
were measured on a coordinate measuring machine~CMM! and
an analysis of variance technique was used to separate the u
tainties generated by the measurement and by manufacturing.
types of features were analyzed in this study:~1! uncertainties of
the distance between hole centers and~2! orthogonalities of pe-
ripheral hole centers. The essential techniques employed are
sented in this paper in order to form a basis for estimating
uncertainties associated with production parts. For a more deta
discussion, along with supporting metrology data, see Gilsinn
Ling @4#.

Various authors have discussed different aspects of the prob
of machining uncertainties. Under a controlled set of experime
Wilhelm, Srinivasan and Farabaugh@5# have demonstrated tha
the measured behavior of the machine tool could be relate
variations found in prismatic part features cut on that mach
tool. The machining and metrology conditions were tightly co
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trolled. A horizontal machining center was used. Parts were p
duced with features similar to those in this study. The resu
indicated that most part errors fell within two standard deviatio
of measured machine errors. However, under uncontrolled co
tions, a recent study by Chatterjee@6# has shown that there is
significant deviation in machine tool performance between st
and operating conditions, where machine parameters are like
vary due to cutting and thermal loads. Shin and Wei@7# developed
a kinematic model for a multi-axis machine tool in order to pr
dict deterministic errors. They added stochastic terms to the
dicted errors and theoretically estimated the means and varia
of the kinematic errors, but provided no experimental d
comparison.

The inaccuracies of drilling operations have been studied b
number of authors. These results, however, are in general
formulated in terms of uncertainties. Kaminski and Crafoord@8#
state that drilling operations give rise to forces in theX, Y andZ
directions as well as torque. They found that the tool deflects m
under dynamic cutting conditions than under static simula
force loads. Lehtihet and Gunasena@9# use a simulation to show
the influence of tolerance specification, size of the tolerance z
hole size density, and production errors on the probability of p
ducing an acceptable hole. Lee, Eman and Wu@10# discuss a
mathematical model for drill wandering motion to explain th
formation of odd-sided polygonal holes during initial penetratio
Fujii, Marui and Ema@11–13# find that the drill point deflects
along an elliptical orbit during whirling vibration. Magrab an
Gilsinn @14# model a drill bit as a twisted Euler beam under ax
loading that is clamped at both ends. The representative se
modes obtained exhibit a complex out-of-plane twisting-type m
tion that suggests a possible explanation for the out-of-roundn
of certain drilled holes.

In a work that relates to the current study Shen and Du
@15–16# developed an uncertainty analysis method that allows
modeling and computation of component error uncertai
sources that lead to coordinate transformation uncertainties. T
show how uncertainties propagate in the homogeneous tran
mations of points, products of transformations and inverse tra
formations. They characterize the uncertainties associated
workpiece positions and orientations in terms of two compone
a bias and a precision uncertainty component. They demons
that the bias and precision components can be propagated
pendently and combined to represent the uncertainties of the
ordinate transformation relations. They validate the method
using Monte Carlo simulation~Bauer@17#! but do not report ex-
perimental data.

Several recent papers relate measurement uncertaintie

e
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CMM measurements to the sampling strategy. Yau@18# proposed
a general mathematical basis for representing vectorial toleran
He developed a nonlinear, best-fit algorithm to evaluate vec
tolerances for both analytic geometric elements and free-form
faces. He then studied the uncertainty of the best-fit result cau
by the sampling strategy and dimensional errors. Phillips, B
chardt, Estler and Buttress@19# examine the uncertainty of sma
circular features as a function of sampling strategy, i.e. the num
and distribution of measurement points. They study the effec
measuring a circular feature using a three-point sampling stra
and show that the measurement uncertainty varies by four or
of magnitude as a function of the angular distribution of the m
surement points.

This paper is organized as follows. Section 2 briefly describ
the machine tool measurement procedure and the part design.
tion 3 describes a kinematic model of a three-axis machine
along with the methods of estimating errors for point locatio
linear distances, and orthogonalities. The uncertainty estimate
CMM measurements of the parts are given in Section 4. So
observations about the case study are given in Section 5,
some final conclusions given in Section 6.

2 Machine Metrology and Part Design
The milling machine used to manufacture the test parts wa

three-axis vertical machining center with anX-axis ~Longitudinal
table! travel of 1020 mm~40 in!, a Y-axis ~Cross table! travel of
762 mm~30 in!, and aZ-axis ~Vertical head! maximum travel of
560 mm ~22 in!. The programming resolution for all three axe
was 0.001 mm~0.0001 in!. The repeatability was reported by th
machine manufacturer as 0.005 mm~0.0002 in! by the VDI 3441
method and60.0025 mm~60.0001 in! by the JIS 6330 method

The part, shown in Fig. 1, was designed to illustrate seve
characteristics of the machining center. The holes around the o
edge have several purposes. First, drilled holes in the center w
used to compute uncertainties in drilled hole-center positioni
The ‘‘squared’’ outer holes allowed comparison of milled hol

Fig. 1 Test part specifications. Dimensions are in millimeters.
190 Õ Vol. 126, FEBRUARY 2004
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centers to the drilled hole-centers. The large square with 150
sides was machined to check the orthogonality or perpendicula
of the machine’sX andY-axes. This property is sometimes calle
squareness. The large internal circular features will not be d
cussed in this paper.

Although ASME B5.54@20# outlines techniques for performing
parametric error measurements of machine tools using ins
ments such as laser interferometers, precision straight edges
pacitance gauges, and electronic levels, a laser ball bar~LBB! was
used to make measurements of the spatial position of the
using a technique called trilateration~see Fig. 2!. Trilateration is a
technique in which a tetrahedron is formed with three base po
~vertices! attached to the machine table, and the fourth attache
the tool holder. The three base points define a coordinate sys
Simple geometric relationships allow the spatial coordinates of
fourth point or tool to be determined relative to this coordina
system. If the base sockets are aligned parallel to one mac
axis and the plane formed by the base is coplanar with the ta
surface then the measurement of errors with respect to theX-axis
andY-axis motions are taken at the table surface level. As the t
moves through space relative to the table, the lengths of the ed
change causing the tetrahedron to deform. The LBB uses an
terferometric technique to measure the lengths of the tetrahed
edges and thus the tool position. The resulting measuremen
cludes all effects that can cause positioning error: geometric, t
mal and elastic. Various error components of the machine tool
measurable by the LBB including linear displacement erro
straightness errors, squareness errors as well as roll, pitch and
errors. For a detailed discussion of the LBB and a comparison
the results of LBB measurements with ASME B5.54 measu
ments see Ziegert and Mize@21#. The spatial measurement accu
racy of the LBB was tested on the MOORE M60 CMM at the Y1
facility, at Oak-Ridge, Tennessee, where it was found that
mean difference between the LBB measured coordinates and

Fig. 2 Laser Ball Bar „LBB … configuration
Transactions of the ASME
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M60 reported coordinates for all measured points was 0.65mm,
with a standard deviation of 0.1mm ~see Srinivasa and Ziege
@22#!. For a discussion of the use of a LBB in dynamic pa
measurements see Schmitz and Ziegert@23# and in modeling and
predicting thermally induced errors see Srinivasa and Ziegert@22#.

The machine measurements were made by the following pr
dure. Five passes in both a forward and reverse direction w
made consecutively in a large work volume that contained
smaller work volume that enclosed the machined parts. The n
ber of passes made was limited by machine time available, w
was an eight-hour business day. This provided ten sets of da
a basis to model each of the error components of the machi
center. The LBB measured all twenty-one-error components
characterize the errors for a three-axis machining center. The
was used to develop regression models of the error componen
functions of the positions along each machine axis.

3 Part Uncertainty Through Model Prediction
Predicting part uncertainty by using a kinematic machine t

model required a number of approximations. First, various e
components were assumed to only enter in a linear fashion.
ond, analysis of the measured machine error components
cated thermal drift between measurement repetitions. Since
mal drift could not be controlled during the measurement proc
the measured curves were treated as bona fide repeat curves
resulting uncertainty models were therefore assumed to be co
vative. Finally, in order to estimate the orthogonality of periphe
hole center alignment, Monte Carlo simulation was used. This
done since the models predicted hole center errors in both of tX
andY components, and a standard least squares linear fit could
be directly applied because it would require that there be error
only one of the components.

3.1 Kinematic Model for a Machining Center. The con-
struction of the kinematic model followed the procedure of Do
mez @24#. The axis system assumed has theX-axis directed to-
wards the right, theY-axis toward the machine, and theZ-axis
directed vertically. Since uncertainties were estimated based
planar locations of such points as hole centers in Fig. 1, only
planar portion of the kinematic model is given here. The followi
error components enter into the planar kinematic error model
the three axis mill:E15dx(x), X-axis scale error;E25dy(x),
Y-straightness ofX; E35dy(y), Y-axis scale error;E45dx(y),
X-straightness ofY; E55«x(x), X-rotation of X ~roll of X!; E6
5«y(x), Y-rotation ofX ~pitch of X!; E75«z(x), Z-rotation ofX
~yaw of X!; E85«x(y), X-rotation ofY ~pitch of Y!; E95«y(y),
Y-rotation ofY ~roll of Y!; E105«z(y), Z-rotation ofY ~yaw of Y!;
E115axy , angle between theX and Y-axes with Y motion. A
generalized straightness error due toX-straightness error o
Y-motion is given byE42E11Dy, whereDy represents incremen
tal steps along theY-axis. The final planar error equations used
analyze the data are given by the following equations.

Ex5E11E41zE61yE71zE91yE102yE11 (1)
Ey5E21E32zE52xE72zE8

For the selected machine tool an effectiveZ value for the produc-
tion of the parts was estimated as follows. Shop personnel i
cated that although the maximum travel for theZ-axis was 560
mm ~22 in! the useful travel of theZ-axis without tool or chuck
was 431.8 mm~17 in.!. The length of the tool used, plus chuc
insert, was 304.8 mm~12 in.!. This produced an effectiveZ-travel
of 127 mm~5 in.!. Any local Z-axis travel to produce the require
parts was considered small relative to theX andY-axis travel so
that, in the model,Z was taken as fixed at 127 mm.

3.2 Regression Models for the Component Errors. In or-
der to compare the results obtained from modeling measured
chine tool errors with calculated errors on the machined p
measured by a CMM, the first task was to mathematically al
Journal of Manufacturing Science and Engineering
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the coordinate systems of the machine tool and the CMM so
the origins and axes overlapped. Since the data taken by the L
was measured relative to the machining center’s coordinate a
formulating models from the LBB data required linking the pa
origin from the CMM measurements to the machine tool coor
nate system.

Figure 3 shows the shifted data values recorded by the LBB
the X-displacement component error,E15dx(x), along with un-
certainty bands using a coverage factor of two~nominal 95% con-
fidence!. The other nine component errors show similar tren
The figure shows a linear trend over the work volume of the t
parts. Linear regression models were fit to each of the nine d
sets. Since eight of the measurement steps fell within the w
volume of the part being milled, only the data from those eig
entered the regression analysis. In that case eighty observa
were made for each of ten error components. The measurem
were normalized to part zero so that the zero point on the h
zontal axis represented the part zero. The figure shows a defi
effect of thermal conditions. There was a general tendency of
graphs for the displacement and straightness errors to rise as
ing progressed. For this initial study, we aimed at minimizing t
number of variations during the process. We desired to perfo
our study at a thermal equilibrium for the machine tool, which
the usual practice on a typical shop floor. However, the shop fl
cooled down after normal working hours, which had a direct
fect on the machine tool temperature and its geometrical e
components. A future study might consider fully characterizi
the thermal range of the machine and its direct correlation
errors on the production part. The angular error components r
through the third pass, with retreat indicating a reversal of rotat
after about five hours of continual running. This thermal effe
introduced a nonstationarity in the data such that traditional
sumptions on the variance of sample repetitions would not ap
but for the purpose of this study we have elected to consider th
as legitimate repeats and the resulting analysis is accepted a
ing conservative. The LBB measurement of the angular er
identified as the eleventh error,E115axy , between theX and Y
axes, was independent of coordinate position. Table 1 gives th
angular errors measured by the LBB in arc seconds and radi
The mean error in radians, estimated standard deviation and
grees of freedom are also given. These were used to estima
confidence interval for a future observation of the angular err
Table 2 gives the slope and intercepts for the linear trend eq
tions describing the error components.

Fig. 3 LBB measurements of machine tool error components
showing the mean least squares trend line with uncertainty
band using a coverage factor of two
FEBRUARY 2004, Vol. 126 Õ 191
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3.3 General Propagation of Uncertainties Using the Kine-
matic Model. In order to estimate the uncertainties a simplif
ing assumption was made that the individual error terms w
uncorrelated since it was difficult to estimate or measure the c
correlation terms for each component error. Since the LBB m
surement instrumentation used did not allow simultaneous m
surements of all component errors this assumption was neces

According to theLaw of Propagation of Uncertainty, outlined
in the ISO Guide@1#, Taylor and Kuyatt@2#, Coleman and Steele
@25# and Wheeler and Ganji@26#, if a variableE, such as those in
Eq. ~1!, is a function ofN stochastic components that are unco
related.

E5 f ~E1 ,¯,EN! (2)

The combined uncertainty ofE, uc(E), can be estimated in term
of the uncertainties of the components, ignoring second o
terms, by

uc
2~E!'(

i 51

N S ] f

]Ei
D 2

u2~Ei ! (3)

The variances of the positioning errors in Eq.~1! can therefore be
computed from the propagation of uncertainties law as

uc
2~Ex!5u2~E1!1u2~E4!1z2u2~E6!1y2u2~E7!1z2u2~E9!

1y2u2~E10!1y2u2~E11! (4)
uc

2~Ey!5u2~E2!1u2~E3!1z2u2~E5!1x2u2~E7!1z2u2~E8!

Table 2 Error component coefficients

Kinematic Error Component Coefficients

Displacement
Slope

Nondim.

Errors
Intercept

mm

dx(x) 21.89E205 25.83E203
dy(x) 23.78E206 4.17E203
dy(y) 21.83E205 4.35E204
dx(y) 23.88E206 3.40E203

Rotational
Slope

Nondim.

Errors
Intercept
Radians

«x(x) 3.77E209 23.44E205
«y(x) 23.06E208 26.09E206
«z(x) 22.87E208 3.06E205
«y(y) 3.77E208 3.98E205
«x(y) 26.04E209 26.57E205
«z(y) 25.62E208 1.51E205

X-Y Axes Angle
Slope

Nondim.

Error
Intercept
Radians

axy 0.00E100 23.33E205

Table 1 LBB measurements of the angular errors between the
X and Y axes

Angular Error BetweenX andY Axes

Pass # Error~arcsec! Error ~radians!

1 26.99 23.39205
2 26.43 23.12E205
3 27.39 23.58E205
4 26.76 23.27E205
5 26.79 23.29E205

Mean 23.33E205
Est. Std. Dev. 1.67E206

Deg. Of Freedom 4
192 Õ Vol. 126, FEBRUARY 2004
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To evaluate the uncertaintiesuc(Ex), uc(Ey), the uncertainties of
individual error components were determined by using mach
characterization data. These uncertainties were estimated
their equations. The methods are described in Montgomery
Peck@27#. Since the component errors are modeled as linear eq
tions, their regression equations take the form

y5Xb1r (5)

where r refers to the regression error and, in general,y is an n
31 vector of observations.X is ann32 matrix of the regressor
variables.b is a 231 vector whose components are:b1 the line
intercept andb2 the line slope.r is an n31 vector of random
errors. The least squares estimator ofb is given by the well-
known formula

b̂5~XTX!21XTy. (6)

Given a coordinate,x1 , which could be along thex or y coordi-
nate axis depending on the approximate error component equ
that is being evaluated, the predicted value is computed as

ŷ5xTb̂ (7)

wherexT5@1 x1# is the regressor variable. A point estimate of t
future observationy0 is given by~7! as

ŷ05x0
Tb̂ (8)

A confidence interval for this predicted observation is

ŷ02kpAŝ2~11x0
T~XTX!21x0!

<y0< ŷ01kpAŝ2~11x0
T~XTX!21x0! (9)

where kp is the coverage factor, taken here askp52 @2#. This
interval is referred to as aprediction intervalfor a future obser-
vation of y0 @27#. It is more conservative than the confiden
interval for the mean, but is more applicable for parts product
since it depends both on the error of the fitted model and the e
associated with future observations of parts. The te
Aŝ2(11x0

T(XTX)21x0) will be referred to as thestandard uncer-
tainty with the understanding that it is the standard error of a n
observation given a value of the regressor variable. The expan
standard uncertainty is then

u~x0!52Aŝ2~11x0
T~XTX!21x0! (10)

where

ŝ25
yTy2b̂TXTy

n22
. (11)

Figure 3 shows the linear equation fit to theX-axis scale,E1 , data
as well as the upper and lower uncertainty bands based on
interval in Eq.~9!.

At this point we will show how the formulas above, used
estimate an uncertainty interval for the next observation fo
linear regression problem, can also be used to estimate an u
tainty interval for the next sample of the angular error given
Table 1. Although the angular error model is considered to b
constant, the representation we select is given by Eq.~5! with the
y vector given by the five angular errors in Table 1 and theX
matrix given by @1 1 1 1 1#T. The parameter estimates are th
given by Eq. ~6!, which in this case isb̂5(XTX)21XTY
51/5( i 51

5 E11,i5Ē11. Thus the least squares model in this case
the mean of the samples. Furthermore,x05@1#, so that
x0

T(XTX)21x051/5. The coverage factor is again selected as 2
this case, the confidence interval for a future sample of the ang
error between thex andy axes is given by

Ē1122A6

5
ŝ2<E11<Ē1112A6

5
ŝ2 (12)

where
Transactions of the ASME
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ŝ25
1

4 S (
i 51

5

E11,i
2 2b̂(

i 51

5

E11,i D (13)

which for the data in Table 1 is 2.88849e212 radian squared
Therefore the uncertainty interval for a future angular error obs
vation, in radians, is

23.70355e25<E11<22.95885e25 (14)

where the estimated standard deviation for a future sampl
1.86177e26 radians.

From the entries in Table 2 one can substitute estimates into
individual component error equations of the general form

y5b2x1b1 . (15)

The degree of freedom of each of the first ten estimates is sev
eight, since there are eighty samples used to estimate the l
error component functions, and the degree of freedom of the
is four. The estimates ofs2 for each of the error component
identified in Section 3.2 are given by

s j
25

1

78H(
i 51

80

~Ei2b2xi2b1!2J , j 51,2,5,6,7

s j
25

1

78H(
i 51

80

~Ei2b2yi2b1!2J , j 53,4,8,9,10 (16)

s11
2 5

1

4 H(
i 51

5

~axy,i2b72!
2J .

With these one can now estimate the variances of the variable
the left of Eq.~15! at a specific point (x0 ,y0) in the machine tool
workspace. These are given by

u2~Êj !5s j
2H 1

80
1

~x02 x̄!

( i 51
80 ~xi2 x̄!2J , j 51,2,5,6,7

u2~Êj !5s j
2H 1

80
1

~y02 ȳ!

( i 51
80 ~yi2 ȳ!2J , j 53,4,8,9,10 (17)

u2~Ê11!5s11
2 H 6

5J .

In order to estimate a confidence interval of a future error
sponse one must add the combined standard uncertainty abo
mean at a point (x0 ,y0) with the combined standard uncertain
about the meanĒ and compute the square roots of

uco
2 ~Êx!5~u2~Ê1!1s1

2!1~u2~Ê4!1s4
2!1z0

2~u2~Ê6!1s6
2!

1y0
2~u2~Ê7!1s7

2!1z0
2~u2~Ê9!1s9

2!

1y0
2~u2~Ê10!1s10

2 !1y0
2~u2~Ê11!1s11

2 !,
(18)

uco
2 ~Êy!5~u2~Ê2!1s2

2!1~u2~Ê3!1s3
2!1z0

2~u2~Ê5!1s5
2!

1x0
2~u2~Ê7!1s7

2!1z0
2~u2~Ê8!1s8

2!.

The prediction error at (x0 ,y0) can be estimated by substitutin
Eq. ~16! and Eq.~17! into Eq. ~18! and use a coverage factor o
two to write

Ex62Auco
2 ~Êx! (19)

Ey62Auco
2 ~Êy!

Equations~1!, ~18! and ~19! were used to estimate the values
Table 3 for three points that were used as line end-points in
next section. The table shows the nominal (x,y) location the
X-axis andY-axis error, the estimated error variance, uncertai
and expanded uncertainty.
Journal of Manufacturing Science and Engineering
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3.4 Linear Distance Uncertainties. Estimating distances
between hole centers is a planar problem so we will only be c
cerned with thex and y errors at the hole centers. Suppose th
two points, (x1 ,y1) and (x2 ,y2), are given on a part, such as th
centers of two drilled holes. Each of these points has an e
associated with it, given by (Ex

1,Ey
1) and (Ex

1,Ey
1). The estimated

length,L, is then computed from

L25~x11Ex
12x22Ex

2!21~y11Ey
12y22Ey

2!2 (20)

and the nominal length,L0 , is computed from

L0
25~x12x2!

21~y12y2!
2. (21)

Since the variance of the actual length is approximately the v
ance of the estimated length, i.e.uco

2 (La)'uco
2 (L ), then, using

Eqs.~20! and ~21!, the estimated variance of the actual length
given by

uco
2 ~L !5F ~x12x2!

L0
G2

~uco
2 ~Ex

1!1uco
2 ~Ex

2!!1F ~y12y2!

L0
G2

3~uco
2 ~Ey

1!1uco
2 ~Ey

2!! (22)

The validity of this equation depends on the statistical indep
dence of the error terms on the right of Eq.~22!.

Using Eq.~22! three length uncertainties were estimated. The
were chosen to reflect the essential nature of the part uncertai
in general. The lengths chosen were the center-to-center len
from hole number 3 to hole number 9, from hole 9 to hole 15, a
finally from hole 3, to hole 15 as given in the part numberi
scheme shown in Fig. 4. The estimates are given in Table 4. T
table is consistent in that the uncertainties squared of the len
between hole-centers are less than the sum of the squares o
component uncertainties.

3.5 Hole Center Orthogonality Uncertainties. If the part,
shown in Fig. 1 and Fig. 4, were ideal, the line through hole
through 15 would lie at right angles to the lines through hole
through 3. However, real parts seldom, if ever, satisfy this pr
erty due to machine orthogonality errors. In general there i
small difference between the actual angle that the two lines fo
and a right angle. This is termed an orthogonality error. Due
inherent machine variability, the set of copies of the part w
expected to have a distribution of orthogonality errors.

Since each of the hole-centers has a point uncertainty
means that there is error in both theX and Y positions of the
center. This fact introduces a problem with finding the best l
through the centers of the holes. Assume that we are given po
(x1,y1),¯,(xN,yN) and we wish to find the least squares lin
through the points. The assumption behind the least squares
mation of coefficients is that the linear first order model can
written asy5b01b1x1r where ther term represents the devia

Table 3 Line end-point uncertainties

X Axis

Hole
Number

Nominal
~mm! Error ~mm!

Variance
~mm!2

Uncertainty
~mm!

Expanded
Uncertainty

~mm!

3 10 2.4 10.6 3.3 6.6
9 10 12.6 24.6 5.0 10.0
15 140 8.2 24.6 5.0 10.0

Y Axis

Hole
Number

Nominal
~mm! Error ~mm!

Variance
~mm!2

Uncertainty
~mm!

Expanded
Uncertainty

~mm!

3 10 10.0 43.7 6.6 13.2
9 140 16.8 43.7 6.6 13.2
15 140 10.6 52.4 7.2 14.5
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tion in the y variable from the line. Thus all of the error in th
approximation is assumed to be relegated to they variable and the
x variable is assumed to have no error. For this application,
desire to fit equations to data in which both variables are sub
to error. The relevant methods are called errors in variables~see
Mandel@28#!. Since the algorithms for this form of data fitting ar
not universally available we chose a Monte Carlo approach
which thex andy distributions of the hole centers were sampled
large number of times, horizontal and vertical lines fit to the
sulting points, and angular differences from right angles co
puted. The uncertainty in this large sample of orthogonality err
could then be computed.

To generate an orthogonality error angle, twenty-eight rand
samples were selected from a normal distribution with zero m
and unit standard deviation, since there were fourteen holes u
to estimate orthogonality. Although there were thirteen physi
holes, hole number 3 was repeated for horizontal fitting and v
tical fitting. There were then two random numbers associated w
each hole, one forX and one forY, designated byRx, Ry. For
each of the fourteen hole-centers the following simulated po
were computed

x5 x̂1Êx1Rxuco~Êx! (23)
y5 ŷ1Êy1Ryuco~Êy!

The horizontal and vertical least squares lines through the ap
priate new hole centers were computed using the normal eq
tions for the horizontal lines and the appropriate equations for
vertical lines. The fitted horizontal and vertical lines took the for

y5b0,h1b1,hx (24)

Fig. 4 Numbered peripheral holes of Fig. 1
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Since the slopes were small and the tangent of a small ang
approximately the angle in radians we equated the slopes
angles. But in order to preserve the sign convention with resp
to the horizontal axis the slope of the vertical line in Eq.~26! must
have its sign changed. Thus the two angles were given by

u15b1,h (25)
u252b1,v

and the difference, or orthogonality error, was given by

Du5u22u1 (26)

The uncertainty of the orthogonality was computed as

uco
2 ~Du!5uco

2 ~u2!1uco
2 ~u1!5uco

2 ~b1,v!1uco
2 ~b1,h! (27)

For each horizontal and vertical line combinationDu was com-
puted using Eq.~24! through Eq.~26!. This process was repeate
a large number of times,M, and the estimated standard deviatio
ŝ was computed. The standard uncertainty was computed fro

uco
2 ~Du!5ŝ2S 11

1

M D (28)

The results from a simulation withM51000 are given in the
Table 5.

4 Part Uncertainties by Coordinate Measuring Ma-
chine Measurements

The twenty-one parts, made according to Fig. 1, were meas
on a CMM at NIST with an estimated uncertainty of 1mm in
positioning error. The following point locations were measure
the hole-center locations for the drilled holes, and the hole-cen
of the milled holes. Five repeat measurements for each of th
points were made on part numbers one through four, wher
small variation between measurements was noted. Therefore,
two repeat measurements were performed on the remaining p

An analysis of variance procedure was used to isolate
manufacturing error from the coordinate measuring machine e
Manufacturing and measurement uncertainties were estima
The analysis of variance procedure was applied to estimate
uncertainties of the locations of the hole-centers for both dril
and milled holes as well as to estimate the orthogonality. An
timate of the uncertainty of the distance between features was
developed.

4.1 An Analysis of Variance Strategy. For each machined
part, the errors in hole-positions were measured by a CMM re
tive to a part coordinate system located at the lower left corne

Table 5 Orthogonality uncertainty „not expanded …

Mean Orthogonality
~arc sec!

Sample Standard
Deviation
~arc sec!

Standard Uncertainty
~arc sec!

26.4 13.9 13.9
Table 4 Line length uncertainties

Length Uncertainty

Nominal
~mm!

Estimated
~mm!

Error
~mm!

Variance
~mm!2

Uncertainty
~mm!

Expanded Uncertainty
~mm!

3–9 130 130 0.000 87.3 9.3 18.6
9–15 130 130 0.000 49.1 7.0 14.0
3–15 183.848 183.847 0.001 65.1 8.1 16.2
Transactions of the ASME



Journal of Manu
Table 6 Uncertainty statistics for drilled-holes 3, 9, and 15. The uncertainties are not expanded
uncertainties.

Summary Drilled Hole Statistics

Hole
Number

X Axis Location CMM Measurement

Nominal
~mm!

Error
~mm!

Variance
~mm!2

Uncertainty
~mm!

Variance
~mm!2

Uncertainty
~mm!

3 10 2.7 641 25.3 1.10 1.1
9 10 5.0 511 22.61 1.19 1.1
15 140 24.5 566 23.79 0.71 0.8

Hole
Number

Y Axis Location CMM Measurement

Nominal
~mm!

Error
~mm!

Variance
~mm!2

Uncertainty
~mm!

Variance
~mm!2

Uncertainty
~mm!

3 10 8.0 1294 36.0 0.74 0.9
9 140 21.4 1209 34.8 0.68 0.8
15 140 21.6 1421 37.7 0.98 1.0
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the inner 150 mm3150 mm square shown in Fig. 1. TheX andY
locations of the centers of each drilled and milled hole on eac
the twenty-one parts were measured a multiple number of tim
Associated with each hole-center, two analysis of variance ta
were formed, one for theX-measurements and one for th
Y-measurements. Each table represented all of the location
surement errors for the same hole on each of the parts. The
umns represented the repeated measurement errors from the
nal, as measured by the CMM. The measurement means wer
calculated means for the repeated error measurements for the
numbers of the respective rows. The degrees of freedom were
listed in a column. Finally, the measurement uncertainties w
the standard deviations of the repeated hole-location error m
surements for that row. The measurement means had a g
mean and a variance~i.e., mean of means and a variance
means!. These were taken as the manufacturing error and its v
ance for that hole. That is, these gave estimates of the manu
turing process uncertainties. An overall average variance coul
computed from the column of measurement standard deviati
called the pooled variance, which was taken as an estimate o
uncertainty of the measurements. This uncertainty gave an
mate of the measurement process uncertainty. Once the man
turing and measurement uncertainties had been estimated, th
uncertainties could be computed from the previous formulas.

The analysis of variance techniques were based on Dixon
Massey@29# and Mood and Graybill@30#. The notation used here
is as follows:ni , the number of measurements of thei-th part;
m i , the mean of the repeated measurements for parti; si , standard
facturing Science and Engineering
of
es.
les

e
ea-

col-
omi-
the
part

then
ere
ea-

rand
of
ari-
fac-
be
ns,
the
sti-
fac-
part

and

deviation of the repeated measurements for parti; df5( i 51
21 (ni

21), total degrees of freedom; Vp(m)5(( i 51
21 (ni)(m i

2m̄)2)/(2121), estimate of the between part uncertainty;Vp(s)
5(((ni21)si

2)/df, estimate of the within part uncertainty. Th
F-ratio F5Vp(m)/Vp(s) was used to determine whether there is
significant difference between the two variance estimates~Mont-
gomery and Peck@27#!. For the cases of concern here, the te
value for theF distribution at the 95% level with 20 degrees
freedom forVp(m) and 34~i.e., 54–20! degrees of freedom for
Vp(s), since there are 54 total measurements for each hole ce
over all of the parts, was approximately 1.89. The reader is
ferred to Dixon and Massey@29# for a discussion of the analysi
of variance for a one-way fixed-effects classification model.

At this point we need to introduce some further terminolog
Let

N5(
i 51

21

ni (29)

be the total number of measurements over all the parts. Then
pooled mean, called the mean manufacturing error or grand m
is given by

m̄5
( i 51

21 nim i

N
. (30)

The pooled standard deviation is

sp5AVp~s! (31)
Table 7 Uncertainty statistics for milled-holes 3, 9, and 15. The uncertainties are not expanded
uncertainties.

Summary Milled Hole Statistics

Hole
Number

X Axis
Location CMM Measurement

Nominal
~mm!

Error
~mm!

Variance
~mm!2

Uncertainty
~mm!

Variance
~mm!2

Uncertainty
~mm!

3 10 11.2 86.92 9.3 1.39 1.2
9 10 14.8 158.37 12.6 0.834 0.9
15 140 3.6 202.31 14.2 1.92 1.4

Hole
Number

Y Axis
Location CMM Measurement

Nominal
~mm!

Error
~mm!

Variance
~mm!2

Uncertainty
~mm!

Variance
~mm!2

Uncertainty
~mm!

3 10 11.2 73.15 8.6 0.30 0.6
9 140 9.6 246.05 15.7 0.19 0.4
15 140 4.7 237.28 15.4 0.33 0.6
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An estimate of the standard uncertainty of the grand mean is g
by

u5
sp

AN
(32)

An estimate of the uncertainty of a future measurement samp
given by

uf5SA11
1

ND sp (33)

The corresponding expanded uncertainty of a future measure
can then be taken as

Uf52uf (34)

4.2 Hole-Center Location Uncertainties for the Manufac-
tured Parts. Tables 6 and 7 show theX andY errors of the hole
centers 3, 9, 15, the center location uncertainties, and the mea
ment uncertainties. The measurement uncertainties are app
mately the quoted uncertainty for the CMM at NIST. As the tab
show the drilled hole uncertainties are higher than the milled h
uncertainties. These are typical for the other holes in Fig. 1. Ty
cal error measurements are shown in Fig. 5.

Fig. 5 Mean X „a… errors for the centers of the drilled holes
and mean X „b… errors for centers of milled holes. Vertical axis
represents errors in mm. Horizontal axis represents part
numbers.
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Figure 5~a! shows theX mean measured errors for the cente
of the three drilled holes numbered 3, 9 and 15 in Fig. 5.Y mean
measured errors show similar error formations. The first thing
be noted about the measurements is that part 13 shows a si
cant negativeX-mean error for all three drilled holes compared
the other parts. This appears to be reflected in theY-mean errors
for that part also. Notice also the significant center location err
for parts 3, 19, 21 and 27~a mistaken part blank number for pa
20!. Figure 5~b! shows sharp error differences for theX measure-
ments of milled holes 3, 9 and 15 which are also reflected in thY
measurements. Note that the error range for the milled hole er
is less than that of the drilled hole center errors.

Figure 6 shows the position errors of the holes for the predic
milled and drilled peripheral hole-centers.

The arrows show the direction of the hole center error and
magnitude of the arrows represent scaled magnitudes of the er
Note that the model predicted directions and magnitudes~Fig.
6~a!! closely align with those for the milled holes~Fig. 6~b!!,
whereas the magnitudes and directions of the drilled hole cen
~Fig. 6~c!! vary drastically from the predicted and milled ho
centers.

4.3 Estimating the Uncertainty of a Machined Length Fea-
ture From CMM Measurements. The lengths and uncertain
ties of these lengths were computed for the measured dista
between holes 3, 9 and 15 on the machined parts. The summ
statistics of the measured errors and uncertainties are given fo
three hole-center features in Tables 8 and 9. The error varia
estimates given in these tables were computed as the pooled
ance of the mean. The uncertainty estimates were computed a
square roots of the respective variance estimates. Table 8 give
results for the drilled hole-centers for feature holes 3, 9, and
while Table 9 gives the results for the milled square hole-cen
for the same feature holes. The tables give the nominal coo
nates of the hole-centers, relative to the part origin in the low
left corner. Although not shown in the tables, the measurem
uncertainties fell approximately at the quoted CMM value of
mm.

Table 10 gives the summary results of the center-to-ce
length errors for drilled and milled hole-centers as well as
predicted length errors. The table also includes the expanded
certainties of the length errors.

4.4 Estimating the Uncertainty of Machined Part Hole
Center Orthogonality From CMM Measurements. The pe-
ripheral milled hole centers were selected as points to be used
estimating orthogonality. The milled holes were designed to h
their nominal centers form lines parallel to the edges of the pa
Two nominally orthogonal lines of holes~the bottom row and left
side row! were selected to estimate the uncertainties in the
thogonality of these two lines of holes. The procedure of estim
ing orthogonality was as follows.

For the centers of the holes along theX-axis a least squares fi
of the line formy5mhx1b was made for each of the repetitio
error measurements for each of the parts. This produced a tab
estimated slope values formh . Since the deviation ofmh from
zero was small the values ofmh could be used as angle estimat
since for small angles tan(a)'a in radians andmh is the tangent of
the slope angle. Next the leftmost vertical line of hole centers w
fit with an equation of the formx5mvy1b. The sign of the
resulting slope had to be reversed and then it could be adde
the horizontal slope to determine the orthogonality error. This c
culation is similar to that leading to Eq.~25! and Eq.~26!. The
results are summarized in Table 11. Note that the variance of
metrology uncertainties is an order of magnitude less than
variance of the manufacturing error so that the measured
manufacturing variances could be considered approximately e
as expected.

5 Discussion
When we compared the predicted errors computed from L
measurements for the peripheral holes, the mean errors of the

Transactions of the ASME
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Fig. 6 Arrows represent the direction and scaled locations of
the predicted „a…, the milled „b…, and the drilled „c… hole center
locations
Journal of Manufacturing Science and Engineering
measured parts tended to be larger. The manufacturing uncer
ties for a given feature measurement were greater than those
dicted by the LBB measurements. The signs of the errors for b
the predicted errors and the measured errors tended to be co
tent for the milled holes but not for the drilled holes as shown
Fig. 6. Tables 6 and 7 indicate that the uncertainties associ
with drilling operations tend to be larger than those for millin
operations. A possible explanation for this may be the fact tha
drill bit has a tendency to hop slightly before the flutes bite in
the material being machined. The predicted LBB uncertainties
less than both the drilled and milled center-to-center uncertain
but tend to be closer to the milled uncertainties. This is reason
considering the results shown in Fig. 6.

The range of the predicted hole center variances of theX-errors,
based upon the LBB measurements, fell between 10.6mm2 and
24.6 mm2. For theY-errors, the predicted variances fell betwe
43.7mm2 and 52.4mm2. For the parts measured by the CMM th
variances were significantly larger. TheX-machine error variances
for the drilled holes fell between 511mm2 and 641mm2. For the
milled holes the centerX-machine errors ranged from 86.9mm2 to
202.3mm2. TheY-machine error variances tended to be larger
both drilled and milled hole center errors. For the drilled holes
Y-machine error variances fell between 1209mm2 and 1421mm2.
For the milled holes theY-machine error variances fell betwee
73.2 mm2 and 246.1mm2. We noted that theY-machine error
variances were in general greater than theX-machine error vari-
ances in both the model prediction and CMM measurement ca
As a diagnostic tool this suggests a potential malfunction in
y-axis of the machining center.

The differences between the uncertainties for the drilling a
milling of hole centers are carried over to the estimates of ho
to-hole center lengths. These are shown in Tables 8 and 9.
variances for the center-to-center lengths for the drilled ho
ranged from 1097mm2 to 2549mm2, whereas for the milled holes
they ranged from 305mm2 to 367 mm2. The work of Wilhelm,
Srinivasan and Farabaugh@5# showed that the position errors o
the test part holes fall in general within two standard deviations
the measured machine errors. Their work however was condu
under controlled laboratory conditions. The parts in this stu
were not milled under controlled conditions, but under ordina
shop environment conditions. The results of this study sugg
that for the particular machining center used, the potential len
errors of manufactured parts could fall as far away as seven s
dard deviations of the measured machine errors for drilled ho

Table 8 Manufactured length uncertainties between drilled-
hole centers. The uncertainties are not expanded uncertainties.

Manufactured Length Between Drilled Holes

Hole-Hole

Nominal
Length
~mm!

Actual
Length
~mm!

Actual
Error
~mm!

Actual
Variance
~mm!2

Actual
Uncertainty

~mm!

3 to 9 130 129.978 21.6 2549 50.5
9 to 15 130 129.991 9.5 1097 33.1
3 to 15 183.84776 183.843 22.5 1997 44.7

Table 9 Manufactured length uncertainties between milled
hole centers. The uncertainties are not expanded uncertainties.

Manufactured Length Between Milled Hole Centers

Hole-Hole

Nominal
Length
~mm!

Actual
Length
~mm!

Actual
Error
~mm!

Actual
Variance
~mm!2

Actual
Uncertainty

~mm!

3 to 9 130 129.998 1.6 325 18
9 to 15 130 129.989 11.2 367 19.2
3 to 15 183.84776 183.838 10.0 305 17.5
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Table 10 A comparison of the upper and lower expanded uncertainty limits for the hole-to-
hole lengths based on the CMM measurements and the model estimates based on the LBB
machine measurements

Drilled Hole Expanded Uncertainty Range

Center-to-Center
Lines

Lower Uncertainty
Bound ~mm!

Mean Length
Error ~mm!

Upper Uncertainty
Bound ~mm!

Range Width
~mm!

3 to 9 2122.6 21.63 122.6 245.3
9 to 15 275.7 9.51 75.7 151.4
3 to 15 2111.9 22.45 111.9 223.8

Milled Hole Expanded Uncertainty Range

Center-to-Center
Lines

Lower Uncertainty
Bound ~mm!

Mean Length
Error ~mm!

Upper Uncertainty
Bound ~mm!

Range Width
~mm!

3 to 9 237.6 1.59 37.6 75.2
9 to 15 249.6 11.17 49.6 99.2
3 to 15 245.0 9.96 45.0 90.0

Expanded Uncertainty Estimates Based on LBB Machine Metrology

Center-to-Center
Lines

Lower Uncertainty
Bound ~mm!

Mean Length
Error ~mm!

Upper Uncertainty
Bound ~mm!

Range Width
~mm!

3 to 9 218.7 0.00 18.7 37.4
9 to 15 218.2 4.2 18.2 36.4
3 to 15 216.5 0.3 16.5 33.0
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and three for milled holes. This indicates that machining unc
tainties under a production environment can potentially be m
larger than those obtained under controlled conditions. The
panded center-to-center uncertainty ranges shown in Table 10
consistent with the previous findings. The ratios of the drilled h
ranges to the predicted ranges fell between four and se
whereas the ratios for the milled holes fell between two and th

The predicted mean orthogonality error from Table 5 is26.4
arc sec and the uncertainty is 13.9 arc sec. These were base
the Monte Carlo method of estimating orthogonality from the m
chine tool model and LBB measurements. From Table 11
mean manufacturing orthogonality error from the CMM measu
ments was21.5 arc sec with an uncertainty of 28.7 arc sec
drilled holes. For milled holes the mean orthogonality error w
0.4 arc sec with an uncertainty of 15.5 arc sec. In this case
model estimates over-predict the orthogonality error. However
model results produce an uncertainty near to that for the mil
hole orthogonality. The ratio of the drilled-hole orthogonality u
certainty to the metrology uncertainty was 7.9. In the case of
milled-hole orthogonalities the ratio was 4.8.

In all of the analysis of variance tables theF tests indicated tha
there was a great deal of variability between parts.

Since this was a limited study a relation between the predic
uncertainties and the measured uncertainties in a production e
ronment could not be quantified. However, the authors feel

Table 11 Summary of the orthogonality statistics from CMM
measurements

Summary Drilled Hole Orthogonality Statistics

Manufacturing
Error
~arc sec!

Manufacturing
Variance
~arc sec!2

Manufacturing
Uncertainty

~arc sec!

Metrology
Variance
~arc sec!2

Metrology
Uncertainty

~arc sec!

21.470 825 28.7 12.08 3.6

Summary Milled Hole Orthogonality Statistics

Manufacturing
Error
~arc sec!

Manufacturing
Variance
~arc sec!2

Manufacturing
Uncertainty

~arc sec!

Metrology
Variance
~arc sec!2

Metrology
Uncertainty

~arc sec!

0.364 239 15.5 10.00 3.2
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this could be a significant result, if established, and encour
further research along this line. But what does seem clear is
uncertainties are process dependent.

6 Conclusions
There are a number of conclusions that can be drawn from

study. The first and foremost is that machining uncertainties
be estimated for production machines but uncertainties obta
from measurements of machine error components account
only a small part of machined part uncertainties. These uncert
ties, of course, only apply to the individual machine being studi
however it would be interesting to do a parallel study on a p
duction machine from the same family to determine whether th
are any commonalities. It also seems clear that further stud
needed to determine those aspects of the machining processe
lead to the significant uncertainties affecting machined parts.

In terms of machine metrology, setting up the particular LB
for measuring the machine tool component errors was cum
some, but it did provide measurements for all of the compone
necessary to model the machine tool. It was possible to take a
the measurements in a reasonably short time without chan
fixtures for each component measurement.

The law of Propagation of Uncertainties provided a means
estimating both point location and length uncertainties when co
bined with an adequate kinematic model of the machine tool
der study. There were uncertainties, such as for orthogona
where the law was not applicable directly. These uncertain
occurred in cases where there were no clearly understood f
tional relationships between quantities that would allow the law
be applied. In these cases some form of simulation or Monte C
technique would have to be applied to estimate the uncertain

Finally, it was clear that there should be further studies to
and estimate and separate out the nonstationary effect of the
mal drift in order to obtain a proper estimate of the machine t
error component variability. These studies should also investig
possible measurement techniques to determine the cr
correlation of the various machine tool error components.
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