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Abstract

Estimating error uncertainties arising in parts produced on machine tools in production
machine shops is not a well understood process. The current study details a process of
estimating these error uncertainties. A part with significant features was defined and a
vertical turning center was selected in a production shop to make multiple copies of the
part. Machine tool error components were measured using a laser ball bar instrument.
Twenty-one copies of the part were produced and measured on a coordinate measuring
machine. A machine tool error model based on the measurements of the vertical turning
center machine tool errors was developed. Uncertainty estimates of the errors in the
working volume were calculated. From coordinate measuring machine data error
uncertainties at points on the part were developed. Distances between hole centers were
computed and uncertainty estimates of these lengths generated. Many of the hole centers
were designed to fall along orthogonal lines. Uncertainty estimates were computed of the
orthogonality of these lines. All of these estimated uncertainties were compared against
uncertainties computed from the measured parts. The main conclusion of the work is that
the Law of Propagation of Uncertainties can be used to estimate machining uncertainties
and that predicted uncertainties can be related to actual part error uncertainties.

Keywords: coordinate measuring machine, drilling, error uncertainties, laser ball bar,
machine tools, machine tool errors, milling, Monte Carlo, propagation of uncertainty,
vertical turning center.
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1.0 Introduction®

In the production of machined parts a major problem can face a parts designer. Given a
particular machine tool, how does one estimate beforehand the errors in features for the
parts produced by that machine? Although there are general guides for reporting
uncertainties in experiments (see ISO [1], Taylor and Kuyatt [2], American National
Standards Institute [3]) there have been no published practical case studies on how to
estimate uncertainties of errors of machined part features. Producing such a guide on the
basis of case studies for a wide range of machine tools would be a large undertaking. This
report can be regarded as an attempt at one chapter of such a guide.

A project was defined in which a part was specified and given to a production machine
shop with an order to make twenty one copies of the part on the same machine. A three-
axis machining center on the shop floor was selected (See Figure 1). The part designed
had drilled and milled holes and a circular slot (See Figure 2). The error components of
the machine tool were measured multiple times by a laser ball bar (LBB). An error model
of the machining center was developed and axis error uncertainties estimated by using the
propagation of error formula from the ISO Guide [1]. An analytic formula was developed
that could be used to estimate the variation in distance between features, such as hole
centers. For orthogonal and circular features, Monte Carlo techniques had to be
developed in order to estimate uncertainties. The parts themselves were measured on a
coordinate measuring machine (CMM) and an analysis of variance technique was used to
separate the measurement and manufacturing uncertainties of the measured hole centers
and inner and outer radii of the circular slot. The various techniques employed are
documented in this report in order to form a basis for estimating the uncertainties
involved in producing parts on machine tools.

The measurement of the machine tool (described in Section 3) was done by an instrument
that measured machine tool errors at points on a plane above the parts production surface.
Estimates of this height were not obtained at the time the machine tool error
measurements were made. Therefore, the model as finally used in this report does not
contain terms that include the errors due to this height difference. In future error
measurements of similar machine tools these terms should be included. Since the object
of this report was to develop a methodology, the authors feel that this oversight does not
invalidate the overall procedures developed.

A review of the related research literature is given in Section 2. Section 3 briefly
describes the machine tool measurement procedure and the part design. Section 4
describes the kinematic model of a three axis machine tool along with the methods of
estimating errors for point location, linear distances, orthogonalities and circularities.
The uncertainty estimates for CMM measurements of the parts are given in Section 5.
The comparative results are given in Section 6 with some final conclusions given in
section 7.

' The term “error” used in this report is used in the machining sense to refer to axis errors, e.g. linear axis
errors, straightness errors, or orthogonality errors, rather than in the statistical sense.



2.0 Related Research

Various authors discuss different aspects of the problem of machining uncertainties.
Under a controlled set of experiments Wilhelm, Srinivasan and Farabaugh [4] have
demonstrated that the measured behavior of the machine tool could be related to
variations found in prismatic part features cut on that machine tool. The machining and
metrology conditions were tightly controlled. A horizontal machining center was used.
Parts, with features similar to those in the current study were cut. The results indicated
that most part errors fell within two standard deviations of the machine errors. However,
under uncontrolled conditions, a recent study by Chatterjee [5] has shown that there is a
significant deviation in machine tool performance between static and operating
conditions, where machine parameters are likely to vary due to cutting and thermal loads.

Shin and Wei [6] developed a kinematic model for a multi-axis machine tool in order to
predict deterministic errors. They added stochastic terms to the predicted errors and
theoretically estimated the means and variances of the kinematic errors, but provide no
experimental data comparison

The inaccuracies that relate to drilling operations have been studied by a number of
authors. These results, however, are in general experimental or analytic in nature and are
not formulated in terms of uncertainties. Kaminski and Crafoord [7] state that drilling
operations give rise to forces in the X, Y and Z directions as well as torque. They found
that the tool deflects more under dynamic cutting conditions than under static simulated
force loads. Lehtihet and Gunasena [8] use a simulation to show the influence of
tolerance specification, size of the tolerance zone, hole size density, and production errors
on the probability of producing an acceptable hole. Lee, Eman and Wu [9] discuss a
mathematical model for drill wandering motion to explain the formation of odd-sided
polygonal holes during initial penetration. Fujii, Marui and Ema [10, 11, 12] find that the
drill point deflects along an elliptical orbit during whirling vibration. Magrab and Gilsinn
[13] model a drill bit as a twisted Euler beam under axial loading that is clamped at both
ends. The representative set of modes obtained exhibit a complex out-of-plane twisting-
type motion that suggests a possible explanation for the out-of-roundness of certain
drilled holes.

In a work that relates to the current report Shen and Duffie [14, 15] develop an
uncertainty analysis method that allows the modeling and computation of component
error uncertainty sources that lead to coordinate transformation uncertainties. They show
how uncertainties propagate in the homogeneous transformations of points, products of
transformations and inverse transformations. They characterize the uncertainties
associated with workpiece positions and orientations in terms of two components, a bias
and a precision uncertainty component. They demonstrate that the bias and precision
components can be propagated independently and combined to represent the uncertainties
of the coordinate transformation relations. They validate the method by using Monte
Carlo simulation (Bauer [16]).



Several recent papers relate measurement uncertainties in CMM measurements to the
sampling strategy. Yau [17] proposes a general mathematical basis for representing
vectorial tolerances. He develops a nonlinear, best-fit algorithm to evaluate vector
tolerances for both analytic geometric elements and free-form surfaces. He then studies
the uncertainty of the best-fit result caused by the sampling strategy and dimensional
errors. Phillips et al. [18] examine the uncertainty of small circular features as a function
of sampling strategy, i.e. the number and distribution of measurement points. They study
the effect of measuring a circular feature using a three-point sampling strategy and show
that the measurement uncertainty varies by four orders of magnitude as a function of the
angular distribution of the measurement points.



3.0 Parts Manufacturing and Machine Metrology
3.1 Milling Machine Specifications

The milling machine used to manufacture the test parts (Figure 1) is a three-axis vertical
machining center with an X-axis (Longitudinal table) travel of 1020 mm (40 in), a Y-axis
(Cross table) travel of 762 mm (30 in), and a Z-axis (Vertical head) travel of 560 mm (22
in). The programming resolution for all three axes is 0.001 mm (0.0001 in). The
repeatability is reported by the machine manufacturer as 0.005 mm (0.0002 in) by the
VDI 3441 method and +/- 0.0025 mm (+/- 0.0001 in) by the JIS 6330 method.

Figure 1: Three-Axis Machining Center

3.2 Parts Design

The part, shown in Figure 2, was designed to illustrate several characteristics of the
machining center. The holes around the outer edge have several purposes. First, drilled
holes in the center were used to compute uncertainties in drilled hole center positioning.
The “squared” outer holes allowed comparison of milled hole centers to the drilled hole
centers. The large square with 150mm sides was machined to check the orthogonality or
perpendicularity of the machine’s X and Y axes. This property is sometimes called
squareness. The large internal circular features were cut in order to test the contouring
performance of the machine.

10
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Figure 2: Test Part Specifications. Dimensions are in millimeters

3.3 Measuring the Vertical Machining Center

The dimensional accuracy of the work piece is affected by the errors of the various
positioning elements of the machine tool which contribute to the positioning accuracy of
the cutting tool. Each machine element normally has one degree of freedom of nominal
motion. But, there are six error components associated with each axis of motion. These
six error components consist of three translations along, and three rotations about the
three coordinate axes(roll, pitch and yaw). They are referred to as parametric errors, and
in general are functions of axis position. For a three-axis machine tool there are twenty-
one error components (six for each axis and three axis orthogonality errors).

11



ASME B5.54 [19] outlines techniques for performing parametric error measurements of
machine tools using instruments such as laser interferometers, precision straight edges,
capacitance gauges, and electronic levels. The use of these devices to perform error
component measurements requires care and considerable time. Kakino, Thara and
Nakatsu [20] report the results of using a telescoping magnetic ball bar to measure
circular motion errors of NC machines. They develop a formula that relates the radial
displacement errors of the telescoping magnetic ball bar to the machine position error
vector at a nominal point in the NC machine tool work volume. However, direct
measurements of the spatial position of the tool are made feasible by using a metrology
device that measures spatial positions by trilateration, called a laser ball bar (LBB) (see
Figure 3). Trilateration is a technique in which a tetrahedron is formed with three base
points (vertices) attached to the machine table, and the fourth attached to the tool holder.
The three base points define a coordinate system. Simple geometric relationships allow
the spatial coordinates of the fourth point or tool to be determined relative to this
coordinate system. As the tool moves through space relative to the table, the lengths of
the edges change causing the tetrahedron to deform. The LBB uses interferometry to
measure the lengths of the tetrahedron edges and thus the tool position. The resulting
measurement includes all effects which can cause positioning error: geometric, thermal
and elastic. For a detailed discussion of the LBB and a comparison of the results of LBB
measurements with ASME B5.54 measurements see Ziegert and Mize [21]. For a
discussion of the use of a LBB in dynamic path measurements see Schmitz and Ziegert
[22] and in modeling and predicting thermally induced errors see Srinivasa and Ziegert
[23].

Various error components of the machine tool are measurable by the LBB. For example,
when a single axis of a machine is actuated, the tool point is intended to move from the
starting point to the ending point in a straight line. The distance between the starting and
ending points should be exactly the displacement commanded. If it is not, then the
machine is said to exhibit a linear displacement error. In general, the amount of the linear
displacement error is a function of the axis position and direction of motion. Due to
imperfections in the guideway system, the actual motion deviates from a perfect straight
line. These deviations are termed straightness errors. The individual axes of a machine
tool are constructed to provide axis motions which are perpendicular to each other. Due
to imperfections in the machine construction, the actual motions of the axes are not
exactly perpendicular. These errors are called axis alignment errors or squareness errors.
Besides measuring displacement, straightness and squareness errors the LBB can
measure the angular errors exhibited by the axes during motions. These are called roll,
pitch and yaw. The measurement of these angular errors is accomplished by replacing the
single tool socket with a fixture which holds three sockets, one of which is on the spindle
centerline. The center socket is used to determine the linear displacement and straightness
errors. Due to orientation changes, the displacement of the other two sockets will not be
the same as the first. The LBB uses the difference in displacements of the three sockets to
determine roll, pitch and yaw errors of the machine axis at each point along its travel.

12



The machine measurements were made by the following procedure. Five passes in both a
forward and reverse direction were made in a large work volume that contained the
smaller work volume enclosing the machined parts. This provided ten sets of data as a
basis to model each of the error components of the milling machine. The LBB measured
all twenty-one error components that define the errors for a three-axis mill. The data was
used to develop regression models of the error components as functions of the positions
along each machine axis. All five passes by the LBB were performed consecutively over
a period of eight hours.

Figure 3: Laser Ball Bar Configuration

13



4.0 Part Uncertainty through Model Prediction

Predicting part uncertainty by using a kinematic machine tool model requires a number of
approximations. The first approximation assumes that the various error components
combining to form a kinematic model of the machine tool errors enter in a linear fashion
only. This is reasonable when the order of magnitude of the error components is
examined. Any higher powers of the components become negligible. Second, the
measurement of the machine error components indicate thermal drift of the errors
between measurement repetitions as will be shown below. The authors recognize that the
drift existed but could not control it during the measurement process. Thus for the
purpose of this study the drift curves are treated as bona fide repeat curves and the
resulting analysis will be assumed to be overly conservative. Finally, in order to estimate
such quantities as circularity that are not defined in an analytical form, Monte Carlo
simulation must be used in which an approximation to the distribution of the coverage
factor for point uncertainties must be made. This will be discussed further below.

In this section, a kinematic model of the machine tool, described in Section 3.1, will first
be constructed. The error components entering into this kinematic model will then be
shown to exhibit a linear trend over the workspace of the manufactured parts. A general
analysis of point location uncertainties, based on this model, will then be given. Using the
point uncertainty estimates an analytic method will be developed to estimate length
uncertainties between feature points. Both analytic and Monte Carlo methods will then be
used to estimate orthogonality uncertainties. Finally a Monte Carlo procedure will be
used to estimate circularity uncertainty.

4.1 Kinematic Model for a Milling Machine

The following notation will be used to describe the kinematic model for the three axis
mill.

L. a,(y) - Angle between the X and Y axes
2. a,(2) - Angle between the X and Z axes
3. a,(2) - Angle between Y and Z axes

4. 6,(X) - X-Axis Scale Error

5.0,(y) - Y-Axis Scale Error

6. 0,(2) - Z-Axis Scale Error

7. 6,(X) - Y Straightness of X

8. 0,(X) - Z Straightness of X

9. 0,(y) - X Straightness of Y

10. 0,(y) - Z Straightness of Y

11. 6,(2) - X Straightness of Z

12. 6,(2) - Y Straightness of Z

13. £,(X) - X Rotation of X (roll of X)

14



14. £,(X) - Y Rotation of X (pitch of X)

15. £,(X) - Z Rotation of X (yaw of X)
16. £,(y) - X Rotation of Y (pitch of Y)
17. £,(y) - Y Rotation of Y (roll of Y)
18. &,(y) - Z Rotation of Y (yaw of Y)
19. £,(2) - X Rotation of Z (pitch of Z)
20. £,(2) - Y Rotation of Z (yaw of Z)
21. £,(2) - Z Rotation of Z (roll of Z)

Three of the straightness errors must be modified to form generalized straightness errors
due to the angular errors between axes. In particular

1. A generalized X-straightness error of Y motion is given by o0, (Y)+a,(y)Ay.
2. A generalized X-straightness error of Z motion is given by 0, (2) +a, (2)Az.
3. A generalized Y-straightness error of Z motion is given by 6, (2)+a,(2)Az.

In these formulas Ay and Az represent incremental steps along the Y and Z axes.

The construction of the kinematic model along the lines of Donmez [24] begins by
assuming that a reference axis system is established by setting the part zero at the lower
left corner of the part. The vertical, or Z, axis system is initialized vertically over the part
zero but offset from it by a tool offset, z,. To model a drilling operation three steps are
performed. First, the Y slide is moved forward, or in the negative Y direction. This slide
carries the X slide along and holds the Z slide fixed. The second step is to move the X
slide to the left and hold both the Y and Z slide fixed. Finally the Z slide is moved in a
downward or negative Z direction to produce the drilled hole (See Figure 4 below).

The motion of the Y slide with respect to the reference axis system is modeled by the
product of an ideal motion matrix and the motion error matrix. This is given by

1 000 1 —&,(Y) &, (y) S(Y)—a,(y)dy

T - 0 1 0 yil &) S 182 5y (¥) 1)
0.0 1 0f|-¢,(y) &(Y) 1 5,(Y)
000 1 0 0 0 1

The motion of the X slide with respect to the Y slide is modeled by the product of an
ideal motion matrix and the motion error matrix. This is given by

15



1 0 0 X 1 —&,(X) £,  6,(X

T o= 01 0 0] £, 1 —&,(X) 0,(X) @
001 0fj-¢, & 1 0,(X)
0 0 0 1 0 0 0 1

The work piece point with respect to the X slide involves only a translation matrix so
that

1 0 0 —Xx
01 0 -
T, = Y ®)
001 vy
0O 0 O 1

The motion of the Z slide with respect to the reference axis system is given by the
product of the ideal motion matrix and the motion error matrix as

1 0 0O 1 -£,(2) ¢,(2 0,(29-a(dz

o _ 01 0 0] &,(2 1 -&(2 o0, (2)-a,(2)dz ' 4)
001 z|-¢/(2 &2 1 0,(2)
0 0 01 0 0 0 1

Finally the tool point with respect to the Z slide involves only an identity matrix as

(%)

oS O = O
S = O O
- o O O

The matrix relating the work piece point relative to the reference axis, ~T

w2

is given by
the matrix product

FaTw = RTy yTx XTw (6)

16



and the matrix relating the tool tip to the reference axis, T, is given by the matrix
product

RTt =RTz T, (7
The error matrix relating the tool point to the workpiece, E, is then given by
E-"T," °T,.. ®)

Using a symbol manipulator, such as MACSYMA, it is possible to compute the
displacement errors of the work point with respect to the zero reference point (see
Appendix E). These errors , ignoring cross-products and higher-order terms, are given by

B, =Ye,(Y)+28,(Y) +5,(Y) + Y&,(X) +6,(X) = 6,(2) = ya, (Y) + Zat,(2) + 28, (X)
E, =6,(y)-x6,(0)+6,(X)-26,(Y)-6,(D+2a,(2) - 25,(x),  (9)

EZ = _ygx(y) + §z(y) + ng(x) - ygx(x) + 52()() - 52(2) .

Equation (9) provides a formula for combining individual machine error components to
estimate the resultant positioning error between the tool and the work piece. Individual
error components can be obtained using machine tool metrology characterization
procedures outlined in the literature ASME B5.54 [19]. However, in this study the LBB
methods described in Section 3.3 were used. Although most of these errors are
repeatable, there is always a measurable amount of variation in the machine behavior due
to various factors influencing the machine performance. These variations result in the
variation of the estimates obtained by the kinematic equations given in equation (9) as
well as the variation in the machined part dimensions and form.

Since only planar errors are to be studied in this report any terms in equations (9) that
involve a Z coordinate value are dropped so that the final equations used to analyze the
data are given by the following equations.

Ex = y‘c"z(y)—i_é‘x(y)+ ygz(X)+5x(X)—an(y)

10
E, = 5,(Y)=x&,(X)+5,(X) (10)

In order to evaluate these formulas the first task was to develop equations for each of the
components that relate the component errors to the coordinates X and Y.

17



Axis System for the Three Axis Machining Center

<+— Z -Slide

X - Slide Y - Slide
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Figure 4: Kinematic Model Axes Systems

4.2 Regression Models for the Component Errors

In order to compare the results obtained from modeling machine tool errors with those
measured on parts produced on the machine the strategy was to align the coordinate
systems so that the origins and axes overlap. The data taken by the LBB was measured
relative to the machine’s coordinate axis. The first step in modeling the data was to locate
the part origin for measurements within the machine coordinate system. This was the
point used as the part origin when the parts were measured on a CMM. Although the part
origin for machining was taken as the center of the part shown in Figure 2, the part origin
for measurements was taken as the lower left corner of the inner 150 by 150 mm square.
The component error data on the machine tool was taken by the LBB relative to the
machine coordinate system in steps of 25.4 mm in both the X and the y direction, with
twenty-five steps in the X direction and twenty-six steps in the y direction. For each of
these points there were ten data values. The part origin for measurement in the machine
coordinate system was located within one of these intervals for X and one for y. The
mean values of the ten data values for each of the error components were computed and
their values were interpolated to find the values of the components at the part origin for
measurement. The data and the x and y scales were then shifted so that the part origin for
measurement became the zero in the x and y coordinate system and the mean component
errors at the part origin for measurement also became zero. This process aligned the on-
machine measurements by the LBB with the part measurements made on the CMM.

18



Figures 5 through 10 below show the shifted data values recorded by the LBB for six of
the seven critical error components. The figures show linear trends in the error
components over the work volume of the test parts. Simple linear regression models
were fit to each of the six data sets. Since eight of the measurement steps fell within the
work volume of the part being milled, only the data from those eight entered the
regression analysis. In that case n= 80 observations were made for each of the six error
components

5,(X), 8, (X), 6, (Y), 6,(¥), £,(X), £,(Y)

These observations were comprised of ten observations at each of eight locations in each
of the X and y coordinates. The measurements have been normalized to part zero so that
the zero point on the horizontal axis represents the part zero. Both forward measurement
beginning from the left in the figures below and reverse measurement show backlash
error.

The figures show a definite effect of thermal conditions. There is a general tendency of
the graphs for the displacement and straightness errors to rise as the number of runs
increases. The angular error components rise through the third pass, with retreat
indicating a reversal of rotation after about five hours of continual running. This thermal
effect introduces a nonstationarity in the data so that traditional assumptions of the
distribution of sample repetitions can not be applied, but for the purpose of this study
they can be considered as legitimate repeats and the resulting analysis accepted as overly
conservative.

X displacement
T T
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Figure 5: LBB Measurements of X Displacement Errors
Showing the Mean Least Squares Trend Line with
Uncertainty Band Using a Coverage Factor of 2

19



¥ straightness of X
T T

Run1f

Runilr

Run2f

Run2r

Run3f

Run3r

Run 4 f

Run4r

Run5 f

Run5r

Upper Uncertainty|
Mean

Lower Uncertainty,

dyx micrometers
o

RRRESRRSERRR

Figure 6: LBB Measurements of Y Straightness of X Errors
Showing the Mean Least Squares Trend Line with
Uncertainty Band Using a Coverage Factor of 2
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Figure 7: LBB Measurements of Y Displacement Errors

Showing the Mean Least Squares Trend Line with
Uncertainty Band Using a Coverage Factor of 2
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Figure 10: LBB Measurements of Rotation About Z with Y
Motion Errors Showing the Mean Least Squares Trend Line with
Uncertainty Band Using a Coverage Factor of 2

The LBB measurement of the angular error between the X and y axes is independent of
coordinate position. Table 1 gives the errors measured by the LBB in arc seconds and
radians. The mean error in radians, estimated standard deviation and degrees of freedom
are also given. These are used to estimate the confidence interval of a future observation
of the angular error.

Angular Error Between X and Y Axes
Pass # Error (arcsec) Error(radians)
1 -6.99 -3.39-05
2 -6.43 -3.12E-05
3 -7.39 -3.58E-05
4 -6.76 -3.27E-05
5 -6.79 -3.29E-05

Mean -3.33E-05
Est. Std. Dev. 1.67E-06
Deg. Of Freedom 4

Table 1: LBB Measurements of the Angular
Errors Between the X and Y axes

Table 2 gives the slope and intercept values for the linear trend equations describing the
error components shown in Figures 5 through 10.
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Kinematic Error component Coefficients
Displacement Errors
Slope Intercept
Nondim. mm
5X(X) -1.89E-05 1.04E-04
§y(x) -3.78E-06 5.16E-04
5y(y) -1.823E-05 1.38E-03
5X(y) -3.88E-06 8.55E-04
Rotational Errors
Slope Intercept
Nondim. radians
SZ(X) -2.87E-08 5.73E-06
5z(y) -5.62E-08 3.52E-06
X-Y Axes Angle Error
Slope Intercept
Nondim. radians
a 0.0000E+00 -3.33E-05
Xy

Table 2: Error Component
Coefficients

4.3 General Propagation of Uncertainties Using the Kinematic Model

In order to estimate the uncertainties associated with the resultant errors a preliminary
assumption is made that the individual error terms are uncorrelated since it is difficult to
estimate the cross correlation of the different dimensional errors.

According to the Law of Propagation of Uncertainty, outlined in the ISO Guide [1],
Taylor and Kuyatt [2], Coleman and Steele [25] and Wheeler and Ganji [26], if a variable
E, such as those in equation (9), is a function of N stochastic components that are
uncorrelated

E=f(]/1,"',}/N) (11)

then the combined uncertainty of E,u,(E), can be estimated in terms of the uncertainties
of the components, ignoring second order terms, by

W(E)~ Z[%] Coy o 12)
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The variances of the positioning errors in equation (9) can be computed from the
propagation of uncertainties law by taking the appropriate partial derivatives as

Ug (E,) = YU (£,(Y) + ZU° (£, (¥)) + U (5, (Y)) + YU’ (£,(X))
+U(8,(X) +U* (6,(2) + YU (at,) + Z°U% () + Z°U7 (£,(X))

U (E,) =u?(5,(Y) + XU’ (£,(X) + U (5, (X)) + 22U’ (£,(¥) + U* (6, (2)
+270% (a,) + U7 (£,(X))

(13)

U (E,) = YU (£, (Y) + U (8, (¥) + XU (£, (X)) + Y’ U? (£,(X)) + U* (5,(X))
+U’(6,(2)

To evaluate the uncertainties U, (E,),uU.(E,),U.(E,) one has to determine the

uncertainties of individual error components using machine characterization data.

For completeness, equation (13) gives the error vector at any given point (X, Y, Z) in the
workspace, but since only uncertainties associated with planar features are of interest
here the uncertainty equations reduce to

Ug (B (X, ¥)) = YU (£,(Y) + U (8, (V) + YU’ (£,(X) + U7 (5,(3)) + y U™ (a, (V)

(14)
U (Ey (% ) =U’(S, (Y)+ XU’ (&,(X) +U* (5, (X))
The approximation here is that the components are taken to be uncorrelated. Since the
measurement instrumentation used did not allow simultaneous measurements of all
component errors the assumption is necessary but simultaneous measurement is
considered a standard in scientific work.

The uncertainties of the components can be estimated from their equations. The methods
are described in Montgomery and Peck [27]. Since the component errors are modeled as
linear equations their regression equations take the form

y=XB+¢ (15)

where ¢ refers to the regression error, not to be mistaken for the rotational errors above,
and
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In general, y is an N x 1 vector of observations. X is an N x 2 matrix of the regressor
variables. £ is a 2x 1 vector whose components are: f, the line intercept and £, the
line slope. € is an N x 1 vector of random errors.

The least squares estimator of f is given by the well known formula
p=(XTX)"XTy (17)
Given a coordinate X;, which could be along the X or y coordinate axis depending on the

approximate error component equation that is being evaluated, the predicted value is
computed as

y=x'p (18)
where X" =[1 x| is the regressor variable.

The regression model (15) can be used to predict a particular value of Yy, corresponding
to a specified level of regressor variable of X, . In particular, let x] =[1 X, ], thena

point estimate of the future observation Y, is given by (18) as
¥o =% B (19)

Under the conditions that the repetition samples and their standard errors satisfy certain
strict probability distribution requirements a confidence interval for this predicted
observation is

¥y — K,y S7 (14 X (XTX) ' X,)

(20)
< Yo < 9y +Ky S0 X (XTX) %))
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where k, is the coverage factor, taken here as k=2 [ 2]. This interval is referred to as

a prediction interval for a future observation of y, [27]. It is more conservative than the
confidence interval for the mean, but it is more meaningful for of parts production. For
the rest of this report the use of the term confidence interval will mean the prediction
interval. Also for the rest of this report the term \/ G (1+ Xg (XTX)™! X, will be referred

to as the standard uncertainty with the understanding that it is the standard error of a new
observation given a value of the regressor variable. The expanded standard uncertainty is
then

U(x,) =24/6° 1+ %] (XTX) " x,) (21)
where
52 _Y'Y-/"XTy 22)
n-2

with y being the data used in (16).

Figures 5 through 10 show the linear equation fit to the data as well as the upper and
lower uncertainty bands based on the interval (20) with a coverage factor of 2. The
coefficients of the fitted linear equations are given in Table 2.

At this point we will show how the formulas above, used to estimate an uncertainty
interval for the next observation for a linear regression problem, can also be used to
estimate an uncertainty interval for the next sample of the angular error given in Table 1.
Although the angular error model is considered be a constant, the representation we select
is given by equation (15) with the y vector given by the five angular errors in Table 1 and

the X matrix given by [1 111 I]T . The parameter estimates are then given by

n 5
equation (17). In this case g = (X' X)) XY =§Z_]‘4a"y=‘ = &,, . Thus the least squares
model in this case is the mean of the samples. Furthermore X, = [1], so that
X] (XTX)'x, = % The coverage factor will again be selected as 2. In this case, the
confidence interval for a future sample of the angular error between the x and y axes is
given by

a, —2 g&ZSa <a, + 2 g&z (23)

where
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6* = L, — By (24)

which for the data in Table 1 is 2.88849¢-12 radian squared. Therefore the uncertainty
interval for a future angular error observation in radians is

—3.70355e-5 < a,, < —2.95885e-5 (25)

where the estimated standard deviation for a future sample is 1.86177¢-6 radians.

From the entries in Table 2 above one can substitute estimates into the component error
equations of the form

8, (0=, %+,

8,(X)=fo X+ fry

Sy (V)= oY+ P

5.(N=Puy+Pn  (26)
£,(X)= s X+ Bs,

£,(V)=BaY+ Py

Ay =Py

Where the hat notation indicates that these equations are taken as estimates for the

variables on the left. The degree of freedom of each of the first six estimates is seventy
eight, since there are eighty samples used to estimate the linear error component

functions, and the degree of freedom of the last is four. The estimates of o for each of
the equations in (26) are given by
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O-az‘x(x) :%{ (5 (X); = B % _ﬂlz)z}

ol =%{ﬁ(& 0, ~ Bk —/322)2}
ol =%{§(§ V) =By —ﬂ32)2}
o2 =%{ (5.9, = ¥, ~ P )2} 21)
a;(x)—%{le(e (0, - X - ﬁsz)z}
o, —%{ (29, - BuYs - B )2}

o - i{Z (=) |

i=1

With these one can now estimate the variance of the variables on the left of (26) at a
specific point (X,,Y,) in the workspace. These are given by

G0 = 0 o
2 (% %)’
I (%%

2,8 2
u (5y(Xo))265y(x) <t 30

Z(Xi - i)z

2,4 ) 1 _
u (5y(yo))20'5y(y) 8()+80(—y)
20 -y’
2(5 2 1 Y
u (5x(y0))zo-5x(y) %+80(y—y)
2 -y

28



uz(éz(xo)):o-i(x) LX)

80+ 80
2 (x-x)

1 (yo — 7) (28)

W (&,(¥) =00 ) o=+
‘180 _
>y -y
i=1

2/ » |6
u (ley)ZO'axy {g}

The combined standard uncertainties of the estimated errors about the mean at a given
regressor point are given by the square roots of

U (B, (X0 Yo)) = Yo (£,(¥)) + U (8, (¥,)) + YoU? (,(%,))
+ U7 (8,(%,)) + YoU? (d,,) (29)

U (B, (X, ¥o)) = U (S, (Yo)) + XU (8,(%,)) + U (S, (%))

where the subscript cp indicates the combined standard uncertainty about the mean at a
point (X,,Y,). However, in order to estimate a confidence interval of a future error

response one must include the fact that the actual observed errors vary about their true
means with estimated variances given by

2 B 2 2 2 2 2 2 2 2
Ugn (Ex (%95 ¥o)) = Yo Oy Y05, T Y00 5,00 T 05,00 T Y004,

2 (E _ 2 2 2 2 (30)
ucm( y(Xoﬂ yO)) - Uﬁy(y) + XOUgZ(x) + Uéy(x)

where the subscript cmrefers to the combined standard uncertainty about the mean E .
The combined standard uncertainty for a future error response is then computed by the
square root of

U (B (%05 ¥0)) = Uz (B, (%5 Y0)) + UGy (B, (% ) an
U (B (%5 Y0)) = Ugn (B, (% ¥ ) +Ug (B, (%, )
where the subscript co refers to a future observation of the errors. These estimated
variances are given in tables Al to A3 in Appendix A for the peripheral hole centers and

for thirty-six evenly spaced points around the inner and outer rings of the circular slot on
the part in Figure 2.
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The prediction error at (X,,Y,) can be estimated by substituting (27) through (30) into
(31) and using a coverage factor of 2 to write

E, (X, ¥o) £2U% (E (X, Y,))

(32)
E, (X,: o) £ 2,/uZ,(E, (X,. ¥,))

A table of the expanded confidence intervals given by equation (32) is given in appendix
A for all of the peripheral holes numbered in Figure 5 below. Tables A4 to A6 give the
prediction intervals for the peripheral hole centers and the evenly spaced points on the
inner and outer rings.

4.4 Linear Distance Uncertainties

Estimating distances between hole centers is a planar problem so we will only be
concerned with the x and y errors at the hole centers. Suppose then that two points,
(X;,Y,) and (X,,Y,), are given on a part, such as the centers of two drilled holes. Each of

these points has an error associated with it, given by (E,(X,Y,),E (X,Y,)) and
(Ex(X,,¥,),E,(X,,Y,)) . The length, L, is then computed from

L = (Xl + Ex(xl’ yl)_XZ - Ex(Xzayz))z +(y1 + Ey(xlvyl)_ Y, — Ey(xza yz))2 (33)

and the nominal length, L, is computed from

L(z) = (Xl - X2)2 +(y1 - yz)z- (34)

Since the variance of the actual length is approximately the variance of the estimated
length, i.e. uZ (L,) ~ u’ (L), then, using equations (33) and (34), the estimated variance
of the actual length is given by (see Appendix D)

(Xl B Xz)

0

Ugo (L) =[ } (Ueo (Ex (X5 1)) + Ug (E (X5, Y,)))

{(y[—y)} (U3 (B, (%, Y)) + U (B, (%,,¥,)) (35)

0

The validity of this equation depends on the independence of the errors
E, (X Y1) Ex(X0, ¥2), By (X, 1), B (X5, Y,)
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Using equation (35) three length uncertainties are estimated. These uncertainties are

compared with uncertainties obtained from measuring the parts on a CMM. More

distance uncertainties could be computed but the authors felt that the lengths chosen

reflect the essential nature of the part uncertainties in general. The lengths chosen are the
center-to-center lengths from hole number three (3) to hole number nine (9), from hole

nine (9) to hole fifteen (15), and finally from hole three (3) to hole fifteen (15). The

predicted point uncertainties for each of the three points are taken from Table A1 in the
appendix, along with the nominal center locations. The estimated length is then
computed using equation (33). The error uncertainties are also taken from Table A1 and
the length uncertainty is computed by equation (35). The expanded prediction interval is
computed using a coverage factor of two. The results are given in Tables 3 and 4 below.

X Axis
Hole Nominal Error Variance | Uncertainty | Expanded
Number (mm) (um) (um)* (pm) Uncertainty

(um)

3 10 1.15 6.86 2.62 5.24

9 10 5.04 20.96 4.58 9.16

15 140 2.07 20.83 4.56 9.12

Y Axis
Hole Nominal Error Variance | Uncertainty | Expanded
Number (mm) () (um)* (um) Uncertainty

(4m)

3 10 1.63 22.60 4.75 9.50

9 140 -0.75 22.55 4.75 9.50

15 140 -1.43 31.23 5.59 11.18

Table 3: Line End-Point Uncertainties
Length Uncertainty
Nominal | Estimated | Error (mm) | Variance | Uncertainty | Expanded
(mm) (mm) (um)* () Uncertainty

(pm)
-9 130 129.998 -0.002 45.1 6.72 13.44
9-15 130 129.997 -0.003 41.8 6.47 12.94
-15 183.848 183.846 -0.002 40.7 6.38 12.76

Table 4: Line Length Uncertainties

These tables are consistent in that the uncertainties squared of the lengths between hole
centers is less than the sum of the squares of the component uncertainties.
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4.5 Orthogonality Uncertainties

If the part shown in Figure 2 and Figure 11 were ideal then the line through holes 9
through 15 would lie at right angles to the lines through holes 9 through 3. However, real
parts seldom, if ever, satisfy this property. In general there is a small angular difference
between the actual angle that the two lines form and a right angle. This is termed an
orthogonality error. Each copy of the same part will have a slightly different
orthogonality error. The uncertainty in the distribution of these orthogonality errors is the
topic of this section.

Since each of the hole centers has a point uncertainty this means that there is error in both
the x and y positions of the center. This fact introduces a problem with finding the best
line through the centers of the holes. Assume that we are given points

(X, Y,),+»(Xy, Yy ) and we wish to find the least squares line through the points. The

assumption behind the least squares estimation of coefficients is that the linear first order
model can be written as Yy = S, + ,X+ & where the & term represents the deviation in
the y variable from the line. Thus all of the error in the approximation is assumed to be
relegated to the y variable and the X variable is assumed to have no error. The problem of
fitting equations to data in which both variables are subject to error, see e.g. Mandel [28].
The relevant methods are called errors in variables.

In this report we will use two different approaches. The first is a technique suggested by
Coleman and Steele[25] in which the uncertainties in the least squares coefficients S, S,
are connected to the uncertainties in the data points themselves. The second is a Monte
Carlo approach in which the x and y distributions of the hole centers are sampled a large
number of times, horizontal and vertical lines fit to the resulting points, and angular
differences from right angles computed. The uncertainty in this large sample of
orthogonality errors can then be computed.

In the first of the two methods (Coleman and Steele[25] ) the assumption is made that the
points (X, Y,),--+,(Xy,Yy) are given data points and the usual least squares estimates of

the slope and intercept are given by

ND XY =2 %2y,
ﬂ] — i=1 |=1N i=l1 .
NZ(X )— ZX.J
T (36)
Z(Xf)Zy. 2% 2 (%)
ﬂo — =l i=1 i=1 i=1

N () - Z’ﬁj

Each of these coefficients can be thought of as functions of the data points so that
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ﬂl :ﬂ1(xl""’XN>y1a"'ayN)

(37)
ﬂo :ﬂo(xla"'aXNayla"',yN)

Using the propagation of uncertainties formula one gets

U(f,) = Z(aﬂ'j U2 (E, <x.,y.>)+z[aﬂ UL (E, (. 9,)
Xi i (38)

U2(fy) = Z(aﬂ"] U2 (E,( .,y.>)+z(£°j U3 (E, (%.9,)

| i=1 i

where we assume that each point is the sum of a nominal point plus an error term of the
form

X =X +E (XY,
1 AI X(AI >,/\) (39)
Yi =yi+Ey(Xi’yi)

To get the uncertainties on the right hand side of (38) one uses the fact that

uéo(xi) = Ugo()A(i + Ex()A(i > yi )) = USO(EX()A(i > yi ))

2 2 /3 NN 2 A A (40)
Uso (Y1) = Ug, (V; + Ey(xisyi ) = uco(Ey(Xisyi))

The orthogonality errors only require computing slope differences so that we only need to
compute the partial derivatives of the slope f,. These are given by

OX, N N2
{NZ(xﬁ)—(in] }
i=1 i=1 (41)

o5 NX, — Z X

i NZ(xﬁ)—(in]

1 _

where (X, Y,) are given by (39). For the case of the vertical lines between hole centers
one fits X against y and the roles of X and y in (41) reverse.

The fitted horizontal and vertical lines will take the form
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Y= Bon+ BipX

42
X:ﬂo,v +ﬂl,vy ( )

Since the slopes are small and the tangent of a small angle is approximately the angle in
radians one may equate the slopes with angles. But in order to preserve the sign
convention with respect to the horizontal axis the slope of the vertical line in (42) must
have its sign changed. Thus the two angles are given by

‘91 = ﬂl,h

92 = _:Bl,v 43

and the difference, or orthogonality error, is given by
AO=6,-6, (44)
The uncertainty of the orthogonality is computed as
Ugo (A0) = Uy (6;) +Ugy (6) = Uge (B,,) +Ugo(Bry)  (45)
where the last two uncertainties are computed using (38), (39) and (41).
The uncertainty of the orthogonality of the part was estimated using the horizontal holes

3,26, 25,24, 23,22, 21 and the vertical holes 3, 4, 5, 6, 7, 8, 9 shown in Figure 5. No
expansion factor is used here.

Analytic Estimate of Orthogonality Standard Uncertainty
-5.10 11.09

Table 5: Analytic Estimates of Orthogonality Uncertainty in arc sec. The
Uncertainty is not Expanded.

A second approach to estimating the uncertainty of the orthogonality error is by means of
a Monte Carlo simulation. To generate an orthogonality error angle twenty eight (28)
random samples were selected from a normal distribution with zero mean and unit
standard deviation, since there were fourteen holes used to estimate orthogonality. There
were then two random numbers associated with each hole, one for X and one for y,
designated by R,, R, . For each of the fourteen hole centers the following simulated points

were computed

X=X+ Ex()’\(a y)+ quco(Ex()A(’ y))

. . o oy (46)
y=Y+E, (X9 +RU,(E, (X))
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The horizontal and vertical least squares lines through the appropriate new hole centers
were computed using (36) for the horizontal lines and the appropriate equations for the
vertical lines. For each horizontal and vertical line combination A& was computed using
(42) through (44). This process was repeated a large number of times, M, and the
estimated standard deviation & was computed. The prediction uncertainty was given by

2 _ n2 L
Uz (A0) =6 (1 v J (47)

The results from a simulation with M =1000 is given in the table below.

Mean Orthogonality Sample Standard Standard
(arc sec) Deviation (arc sec) | Uncertainty (arc sec)
-4.68 11.02 11.03

Table 6: Orthogonality Uncertainty. The Uncertainty is not
Expanded.

The figure below shows the distribution of the orthogonality samples.

Distribution of Orthogonality
120 T T T T T T T
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Figure 12: Distribution of the Orthogonalities for 1000 samples.
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4.6 Circularity Uncertainties

In ISO 230-4 [29] on circular tests for numerically controlled machine tools circular
deviation is defined as the minimum radial separation of two concentric circles
enveloping the path produced by the machine tool when programmed to move on the
circular path defined by its diameter (or radius), the position of its center and its
orientation in the working zone. Optionally the circular deviation may be evaluated as the
maximum radial range around the least squares circle. The first definition requires
computing the minimum zone circles which can be formulated as a linearly constrained
optimization problem. The algorithm for computing the minimum zone circles is
sufficiently complex that, for practical purposes, the approach of selecting a least squares
circle provides a tool that can be used in a Monte Carlo simulation to estimate the
uncertainty of the circular deviation or circularity. The algorithm used here to fit the least
squares circle is the Marquardt-Levenberg, based on an algorithm described in Nash [30].
A discussion of the algorithm is given in Appendix F.

In order to compare the estimated uncertainties with the results of measurements of the
parts on a CMM, the same nominal points on the inner and outer walls of the circular slot
feature of the parts were selected. There were thirty six points (36) selected on each wall
around the circular profile. This meant ten degrees between each nominal point. The
nominal points were designated as (X, ¥,),--,(Xy, Y55 ) - The estimated circularity and its

uncertainty were calculated by a Monte Carlo simulation. First one thousand random
numbers were sampled for each point from a normal distribution with a mean of zero and
standard deviation of one and designated R (i,1),---, R, (i,1000) for i =1,---,36 . Another

one thousand samples were selected from the same distribution for each point and were
designated R, (i,1),---, R, (i,1000) for i =1,---,36. For each group of thirty-six random

numbers, new x and y points were generated using (46). Thus, for the kth Monte Carlo
simulation from one to a thousand the new points were computed as

Xi = )A(i + Ex()/\(iiyi)-i_ Rx(iak)uco(Ex()A(i’yi ))

V=9 BRI+ R MU (B, %3 (O
Next, a least squares circle was fit through these points using the Marquardt-Levenberg
nonlinear optimization procedure. This produced the best fit center for the data. The
distance from this point to each of the thirty-six new points was computed and the
circularity was computed as the maximum of these distances minus the minimum. This
procedure was repeated a thousand times. The distribution of the circularities is given in
the histograms in Figures 13 and 14. The corresponding prediction uncertainty for a
future sample is given by

L

ut(C)=361+
«(C) ( 1000

) (49)

2

where 6° is the sample variance
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Mean Circularity (mm) Standard Uncertainty (mm)
0.0179 0.0031

Table 7: Circularity Uncertainty for Inner Circle Feature

Using a coverage factor of two the prediction interval for the inner circular slot edge,
based on the simulation results is

0.0117 =0.0179 —2(0.0031) < ¢ < 0.0179 +2(0.0031) = 0.0241  (50)

Mean Circularity (mm) Standard
Uncertainty (mm)
0.0180 0.0031

Table 8: Circularity Uncertainty for Outer Circle Feature

Using a coverage factor of two the prediction interval for the outer circular slot edge,
based on the simulation results is

0.0118 =0.0180 —2(0.0031) <c<0.0180 +2(0.0031) = 0.0242  (51)

These results are in millimeters. The next sample taken would be expected to fall within
the range (50) or (51) with a 95% confidence.
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Figure 13: Histogram of the Sampled Circularity for 1000 Samples
of the Inner Circle Feature Circularity.

Distribution of Circularity for Outer Path of Circular Slot
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Figure 14: Histogram of the Sampled Circularity for 1000 Samples
of the Outer Circle Feature Circularity.
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5.0 Part Uncertainties by Coordinate Measuring Machine Measurements

Twenty one parts made according to Figure 2 were measured on a CMM. The following
point locations were measured: the hole center locations for the drilled portion of the
holes, the hole centers of the milled portion of the holes, thirty six evenly spaced points
along the edge of the outer ring of the circular slot and thirty six evenly spaced points
along the edge of the inner circle. Five repeat measurements for each of these points were
made on part numbers one through four, while two repeats were performed on the other
parts.

In this section an analysis of variance procedure is explained that isolates the
manufacturing error from the coordinate measuring machine error. Manufacturing and
measurement uncertainties are estimated. The analysis of variance procedure is applied
to estimate the uncertainties of the locations of the hole centers for both drilled and
milled holes as well as to estimate the orthogonality and circularity. An estimate of the
uncertainty of the distance between features is also developed

5.1 Hole Center Location Uncertainties for Manufactured Part

The following notation will be used to estimate the manufactured part uncertainties:

1. EXLE] - Measured Hole Location Errors along the X and Y axes.
2. ELLE] - Actual Hole Location Errors along the X and Y axes.
3. 1,1, - Hole Location Measurement Process Errors along the X and Y axes.

The main assumption made here is that the actual hole location errors due to the
manufacturing process and the measurement process errors are uncorrelated. Therefore,
their corresponding variances can be added to estimate the variances of the measured
hole location errors.

V(E() =V(ED) +V(1,)

N . (10)
V(E,) =V(E,)+V(7n,)

If the variances of the measurement process errors can be shown to be small relative to
the variances of the measured hole location errors then it is reasonable to suppose that the
measured error variance is a good approximation of the actual manufactured hole error

variance. That is if V(77,) <<V(E}") then V(E?) »V(E,") and similarly for y.

For each machined part, the errors in hole positions are measured by the CMM relative to
a part coordinate system located at the lower left corner of the inner 150 mm X 150 mm
square shown in Figure 2. The X and Y locations of the centers of each drilled and milled
hole on each of the twenty-one parts were measured a multiple number of times.

40



Associated with each hole center one can form two analysis of variance tables, as shown
below, one for the X measurements and one for the Y measurements. The table represents
all of the location measurement errors for the same hole on each of the parts. The
columns representing the repeated measurements are the errors from the nominal
measured by the CMM. The column of measurement means is the column of row means
for the repeated error measurements for the part number of that row. The degrees of
freedom are then listed in a column. Finally, the column of measurement uncertainties is
the column of standard deviations of the repeated hole location error measurements for
that row. The column of measurement means itself has a grand mean and a variance.
These will be taken as the manufacturing error and its variance for the X error for that
hole. That is, these give estimates of the manufacturing process uncertainties. The
column of measurement standard deviations has a variance, called the pooled variance,
which will be taken as an estimate of the uncertainty of the measurements. This
uncertainty gives an estimate of the measurement process uncertainty. Once the
manufacturing and measurement uncertainties have been estimated, the part uncertainties
can be computed from the previous formulas.

Repeat = Measurements
Part # R R, Mean Degrees Standard
(Manufacturing of Deviations
Error) Freedom (Metrology
Uncertainties)
1 m, m, A, n -1 S
2 m,, m,, Hy n, -1 S,
21 m, My, Ha n, —1 S
21
i >.(n -1
i=1
F V(1) Vp(s)

Table 9: Analysis of Variance Table for CMM Measurements

This analysis of variance template will be used for estimating uncertainties for the hole
centers, the part orthogonalities and circularities. The analysis of variance techniques
used are based on the discussions in Dixon and Massey [31] and Mood and Graybill [32].
The notation used in Table 9 is as follows:

m; - The j-th repetition of measurement of the i-th part for under consideration.

4; - The mean of the repeated measurements for part i.
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s - Standard Deviation of the repeated measurements for part i.

21
df :Z:(ni —1) - Total degrees of freedom.

i=1

21
Z(ni )t = )’
Vo)== 11 - Estimate of the between part uncertainty.
2.(n =Ds’

V() = —a Estimate of the within part uncertainty.

The ratio F =V (u)/V,(9) is used to determine whether there is a significant difference

between the two variance estimates (Montgomery and Peck [27], Chapter 2). For the
cases of concern here, the test value for the F distribution at the 95% level with 20
degrees of freedom for V (x) and 34 (i.e., 54 — 20) degrees of freedom for V (S), since

there are 54 total measurements for each hole center, over all of the parts, is
approximately 1.89. Since most tables give values for 30 and 40 degrees of freedom for
V,(s) the value above is an interpolation. The reader is referred to Dixon and Massey

[31] for a discussion of the analysis of variance for a one-way fixed effects classification
model.

At this point we need to introduce some further terminology. Let
N=>"n, (14)

be the total number of measurements over all the parts. Then the pooled mean, called the
mean manufacturing error or grand mean, is given by

21
Zni/ui

The pooled standard deviation is

s, = V,(5) (16)

An estimate of the standard uncertainty of the grand mean is given by
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u=—=- (17)

An estimate of the uncertainty of a future measurement sample is given by

u, :(‘/Hﬁjsp (18)

The corresponding expanded uncertainty of a future measurement will then be taken as
U, =2u, (19

Summary tables of these quantities are given in Tables B1 through B4 in Appendix B for
the measurement uncertainties of each of the peripheral holes for all of the parts. Tables
B1 and B2 summarize the results for the X and Y measurements of the drilled holes and
Tables B3 and B4 summarize the results for the X and Y measurements of the milled
holes. Both the drilled and milled holes have the same nominal centers. The first column
of the tables gives the estimates in micrometers of the mean manufacturing error of the
hole center. The second column gives the standard uncertainties of the error. The third
column gives the uncertainty of a new measurement of the hole center and finally the
fourth column gives an expanded uncertainty of this measurement.

Tables B.5 through B.8 in Appendix B give a summary of the analysis of variance tables
for all of the manufacturing errors of all holes for all of the parts. The hole numbers are
given in Figure 11.

Figures 15a and 15b below show the mean measured errors for the centers of the three
drilled holes numbered 3, 9 and 15. These three holes represent the lower left hole, the
upper left hole and the upper right hole respectively. These holes will be used in the next
section to evaluate uncertainties in length measurements. The first thing that can be noted
about the measurements is that part 13 shows a significant negative x mean error for all
three drilled holes compared to the other parts. This appears to be reflected in the y mean
errors for that part also. These plots reflect the numbers in tables C1, C2, C5, C6, C9 and
C10 in Appendix C. Notice also the significant center location errors for parts 3, 19, 21
and 27 (whose stamped part blank was mistakenly machined in place of part 20).

Figure 16b shows sharp error difference for the Y measurements of milled holes 9 and 15
on parts 6 and 21. This is confirmed by looking at tables C8 and C12.
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Figure 15a: Mean X Errors for the Centers of the Drilled Holes.
Vertical Axis represents Errors in mm. Horizontal Axis represents
Part Numbers.
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Figurel5b: Mean Y Errors for the Centers of the Drilled Holes.
Vertical Axis represents Errors in mm. Horizontal Axis represents
Part Numbers.
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Figure 16a: Mean X Errors for the Centers of the Milled Holes. The
Vertical Axis represents Errors in mm. The Horizontal Axis represents
Part Numbers.
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Figure 16b: Mean Y Errors for the Centers of the Milled Holes. The
Vertical Axis represents Errors in mm. The Horizontal Axis represents
Part Numbhers.
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5.2 Estimating the Uncertainty of a Machined Length Feature from CMM
Measurements

The lengths and uncertainties of these lengths will be examined for the distances between
three holes on the parts machined. The summary statistics of the measured errors and
uncertainties are given for the three hole center features in Tables 10 and 11. The error
variance estimates given in Tables 10 and 11 are computed as the pooled variance of the
mean (V,(u) ). The measurement variance estimates are computed as the pooled variance

of the estimated measurement variances (V,(S) ). The uncertainty estimates are

computed as the square roots of the variance estimates. Table 10 gives the results for the
drilled hole centers for feature holes 3, 9, and 15, while Table 11 gives the results for the
milled square hole centers for the same feature holes. The tables give the nominal
coordinates of the hole centers, relative to the part origin in the lower left corner. Since
the measurement of the feature errors are composed of both manufacturing and CMM
measurement errors, the tables then give the manufacturing error, variance and
uncertainty of the part feature as well as the CMM measurement variance and uncertainty
for each feature. The data show that the CMM measurement uncertainties are one to two
orders of magnitude less than the manufacturing uncertainties. This verifies the

assumption that V(™) <<V (E,), and similarly for the Y errors. Thus measured

variances of hole location errors and variances of actual location errors can taken as the
same. For the purpose of this study, then, the measurement mean for each hole will be
taken as an estimate of the manufacturing error for that hole and the measurement
uncertainty in Table 9 above will be taken as the measurement uncertainty for each hole.

Summary Drilled Hole Statistics
X Axis Location CMM Measurement
Hole Nominal Error Variance Uncertainty Variance Uncertainty
Number 2 2
(mm) | («m) | (um) () (pm) (um)
3 10 2.73 641 25.3 1.10 1.05
9 10 4.99 511 22.61 1.19 1.09
15 140 -4.52 566 23.79 0.710 0.843
Y Axis Location CMM Measurement
Hole Nominal Error Variance Uncertainty Variance Uncertainty
Number 2 2
(mm) | («m) | (um) () (4m) (um)
10 2.70 1371 37.03 0.743 0.862
140 2.70 1925 43.87 0.678 0.823
15 140 2.70 2410 49.09 0.982 0.991

Table 10: Uncertainty Statistics for Drilled Holes 3, 9, and 15. The
Uncertainties are not Expanded Uncertainties.
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Summary Milled Hole Statistics
X Axis Location CMM Measurement
Hole Nominal Error Variance Uncertainty Variance Uncertainty
Number 2 2
(mm) | (M) | (um) (4m) (4m) ()
10 11.23 86.92 9.32 1.39 1.18
10 14.79 158.37 12.58 0.834 0.91
15 140 3.63 202.31 14.22 1.92 1.39
Y Axis Location CMM Measurement
Hole Nominal Error Variance Uncertainty Variance Uncertainty
Number 2 2
(mm) | («m) | (um) (sm) (4m) (um)
10 12.84 80.80 8.99 0.30 0.55
140 12.84 274.91 16.58 0.19 0.44
15 140 12.84 417.45 20.43 0.33 0.57

Table 11: Uncertainty Statistics for Milled Holes 3, 9, and 15. The
Uncertainties are not Expanded Uncertainties.

Tables 12 and 13 give the actual lengths and variances of the three hole center to hole
center lengths for the three line lengths for the drilled and milled holes. These are
computed using equations (33) and (35) and the values from tables 10 and 11.

Manufactured Length between Drilled Holes
Nominal Actual Actual Actual Actual
Hole-Hole Length Length Error Variance Uncertainty
(mm) (mm) (um) (um)? (m)
3t09 130 130.0000 0.00 3296 57.41
9to 15 130 129.9905 -9.51 1077 32.82
3t0 15 183.84776 183.8426 -5.12 2494 49.94

Table 12: Manufactured Length Uncertainties Between Drilled
Hole Centers. The Uncertainties are not Expanded Uncertainties.

These tables indicate that the uncertainties associated with drilling operations tend to be
larger than those for milling operations. A possible explanation for this may be the fact
that a drill bit has a tendency to hop slightly before the flutes bite into the material being

machined.
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Manufactured Length between Milled Hole Centers
Nominal Actual Actual Actual Actual
Hole-Hole Length Length Error Variance Uncertainty
(mm) (mm) (arm) (um)? ()
3t09 130 130.0000 0.00 355.71 18.86
9to 15 130 129.9888 -11.16 360.68 18.99
3to 15 183.84776 183.8424 -5.40 393.74 19.84

Table 13: Manufactured Length Uncertainties Between Milled Hole
Centers. The Uncertainties are not Expanded Uncertainties.

5.3 Estimating the Uncertainty of Machined Part Orthogonality from CMM
Measurements

From Tables B5 through BS it is clear that the center locations of milled holes have lower
manufacturing errors. The peripheral milled hole centers were selected as points to be
used for estimating orthogonality. The milled holes were designed to have their nominal
centers form lines parallel to the edges of the parts. Two nominally orthogonal lines of
holes (the bottom row and left side row) were selected to estimate the uncertainties in the
orthogonality of these two lines of holes. All of the twenty-one parts had the milled hole
centers measured on a high precision CMM with repeated measurements of each part.
The first four parts had five repeated center measurements and the rest of the parts had
two repeated measurements. The procedure of estimating orthogonality was as follows:

For the centers of the holes along the Y-axis a least squares fit of the line form y = mx +
b was made for each of the repetitions for each of the parts. This produced a table of
slope values for m. Since the deviation of m from 0 was small the values of m could be
used as angle estimates since for small angles tan(a) = a in radians and m is the tangent of
the slope angle. Next the vertical line of hole centers was fit with an equation of the form
x =my + b. The sign of the resulting slope had to be reversed and then it could be added
to the horizontal slope to determine the orthogonality error. This calculation is similar to
that leading to equations (42) to (44). Table G1 was produced. The grand mean
represents the mean of all of the orthogonality estimates, including repetitions and is
properly weighted by the degrees of freedom. The uncertainty of the means is the
manufacturing uncertainty and the uncertainty of the standard deviations is the CMM
measurement uncertainty.

We will summarize the results in Table 14 below. The error means and variances come
from Table G1, while the other entries are based on the formulas in Section 5.1.
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Mean Variance of the Variance of the
Manufacturing Manufacturing Metrology
Error (@rc sec) | Error (arc SeC)Z Uncertainties
(arc sec)’
-1.059 80.285 8.768
Pooled Standard Pooled Standard | Uncertainty of a Expanded
Deviation of the Uncertainty Future Uncertainty of
Manufacturing (arc sec) Orthogonality a Future
Error (arc sec) Estimate Orthogonality
(arc sec) Estimate
(arc sec)
8.96 1.22 9.05 18.10

Table 14: Summary of the Orthogonality Statistics from CMM

Measurements

Note that the variance of the metrology uncertainties is an order of magnitude less than
the variance of the manufacturing error so that the measured and manufacturing variances
can be considered approximately equal.

5.4 Estimating the Uncertainty of a Machined Part Circularity from CMM
Measurements

On each of the parts a circular slot was milled with an inner and outer radius (see Figure
2). The inner surface of the slot was milled counterclockwise and the outer surface was
milled clockwise. Thirty seven equally space points on each surface were measured on
the CMM and the resulting radii from the best fit center were reported. Again five
repeated measurements were made on the first four parts and two on each of the others.
Based on the thirty seven measured points on each surface a value for the circularity
could be computed as the difference between the largest and the smallest radius of the
thirty seven points. From these calculations Table H1 and Table H2 were prepared.
Tables 15 and 16 below summarize the statistics. Terminology is given in Section 5.1.
Note that there are fifty four circularity estimates for each table.

Mean Manufacturing

Variance of the

Variance of the

Error (£m) Manufacturing Errors Metrology
(um)* Uncertainties (M)’
20.986 7.378 3.130
Pooled Standard Pooled Standard Uncertainty of a New Expanded

Deviation of the

Uncertainty (£m)

Circularity Estimate

Uncertainty of a New

Manufacturing Errors (um) Circularity Estimate
(#m) (#m)
2.716 0.370 2.743 5.486

Table 15: Summary Statistics for Inner Circle of Slot
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Mean Manufacturing Variance of the Variance of the
Error ( Ium) Manufacturing Errors Metrology
(um)* Uncertainties (£m)”
26.018 35.836 2.556
Pooled Standard Pooled Standard Uncertainty of a New Expanded
Deviation of the Uncertainty (M) Circularity Estimate | Uncertainty of a New
Manufacturing Errors () Circularity Estimate
(um) (#m)
5.986 0.815 6.046 12.092

Table 16: Summary Statistics for Outer Circle of Slot

Note that the variance of measurements of the inner wall of the circular wall is less than
the variance of the manufacturing errors in Table 15. Several factors could have
accounted for this. The inner and outer walls of the circular slot were cut in opposite
directions. Direction of cut may have had an effect in leaving small debris. The inner
walls might not have been cleaned sufficiently. Table 16 shows the measurement
variance to be an order of magnitude less than the variance of the manufacturing errors.
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6.0 Comparative Results
6.1 Comparison of Hole Location Errors and Uncertainties

When we compare the predicted errors computed from LBB measurements for the
peripheral holes given in Table A1, the mean errors measured by the CMM shown in
Tables B1 through B4 tend to be larger. The manufacturing uncertainties for a given
feature measurement shown in Tables B5 through B8 are significantly greater than those
predicted by the LBB measurements. These latter are the square roots of the variances
given in the last two columns of Table Al.

The signs of the errors for both the predicted errors and the measured errors tend to be
consistent for the drilled holes. This does not mean that they are all the same but that they
in general cluster in the same groups. For the x-machine errors the signs cluster
negatively between holes twenty-five and fourteen, whereas for the y-machine errors they
cluster between nineteen and six. The consistency does not seem to hold for the milled
holes.

From Table A1, the range of the predicted variances x-errors based upon the LBB
measurements falls between 6.81 zm* and 20.96 xm’. For the y-errors the predicted

variances fall between 22.37 um’ and 31.29 u#m’. For the parts measured by the CMM

the variances are significantly higher. These are given in column two of Tables B5
through B8. For the x-machine errors for the drilled holes the error variances fall

between 511.40 xm’® and 1279.0 xm’*. For the milled holes the center x-machine errors
range from 86.92 um’ to 211.42 um’. The y-machine error variances tend to be larger.
For the drilled holes the y-machine error variances fall between 1310.32 zm’ and
2489.11 pum’. For the milled holes the y-machine error variances fall between 78.77

1M’ and 427.54 um’. We can note here that the y-machine error variances are in

general greater than the x-machine error variances in both the model prediction and
CMM measurement cases.

A question arises at this point. If we only knew the variances (uncertainties) from the
model predictions is there some multiple that could be used to estimate conservatively the
actual manufacturing variances (uncertainties) of the parts for the given machining
center? In order to estimate this relation we can start by considering the ratios between
the lower limits of the manufacturing error variances and the model predicted variances.
For the drilled holes the lower limit ratio for x-machine errors (511.40/6.81) gives 75.1.
The upper limit ratio (1279.0/20.96) gives 61.0. For the milled holes the lower x-machine
error ratio is 12.76 and the upper ratio is 10.1. For the y-machine error variances for the
drilled holes the lower limit ratio (1310.32/22.37) is 58.57 and the upper ratio (2489.11)
is 79.55. Similarly for the milled holes the lower ratio is 3.52 and the upper is 13.66.
These ratios are not immediately revealing. However, since we are looking for relations
between the uncertainties which are the square roots of the variances we wish to examine
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the square roots of these ratios. Taking square roots we can see t