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Abstract 
 
Estimating error uncertainties arising in parts produced on machine tools in production 
machine shops is not a well understood process. The current study details a process of 
estimating these error uncertainties. A part with significant features was defined and a 
vertical turning center was selected in a production shop to make multiple copies of the 
part. Machine tool error components were measured using a laser ball bar instrument. 
Twenty-one copies of the part were produced and measured on a coordinate measuring 
machine.  A machine tool error model based on the measurements of the vertical turning 
center machine tool errors was developed. Uncertainty estimates of the errors in the 
working volume were calculated. From coordinate measuring machine data error 
uncertainties at points on the part were developed. Distances between hole centers were 
computed and uncertainty estimates of these lengths generated. Many of the hole centers 
were designed to fall along orthogonal lines. Uncertainty estimates were computed of the 
orthogonality of these lines. All of these estimated uncertainties were compared against 
uncertainties computed from the measured parts. The main conclusion of the work is that 
the Law of Propagation of Uncertainties can be used to estimate machining uncertainties 
and that predicted uncertainties can be related to actual part error uncertainties. 
 
Keywords: coordinate measuring machine, drilling, error uncertainties, laser ball bar, 
machine tools, machine tool errors, milling, Monte Carlo, propagation of uncertainty, 
vertical turning center. 
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Glossary 
 
 
ASME   American Society of Mechanical Engineers 
CMM   Coordinate Measuring Machine 
ISO   International Organization for Standardization 
LBB   Laser Ball Bar 
NC   Numerical  Controlled 
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1.0  Introduction1

 
In the production of machined parts a major problem can face a parts designer. Given a 
particular machine tool, how does one estimate beforehand the errors in features for the 
parts produced by that machine? Although there are general guides for reporting 
uncertainties in experiments (see ISO [1], Taylor and Kuyatt [2], American National 
Standards Institute [3]) there have been no published practical case studies on how to 
estimate uncertainties of errors of machined part features. Producing such a guide on the 
basis of case studies for a wide range of machine tools would be a large undertaking. This 
report can be regarded as an attempt at one chapter of such a guide.  
 
A project was defined in which a part was specified and given to a production machine 
shop with an order to make twenty one copies of the part on the same machine. A three-
axis machining center on the shop floor was selected (See Figure 1). The part designed 
had drilled and milled holes and a circular slot (See Figure 2). The error components of 
the machine tool were measured multiple times by a laser ball bar (LBB). An error model 
of the machining center was developed and axis error uncertainties estimated by using the 
propagation of error formula from the ISO Guide [1]. An analytic formula was developed 
that could be used to estimate the variation in distance between features, such as hole 
centers. For orthogonal and circular features, Monte Carlo techniques had to be 
developed in order to estimate uncertainties. The parts themselves were measured on a  
coordinate measuring machine (CMM) and an analysis of variance technique was used to 
separate the measurement and manufacturing uncertainties of the measured hole centers 
and inner and outer radii of the circular slot. The various techniques employed are 
documented in this report in order to form a basis for estimating the uncertainties 
involved in producing parts on machine tools.  
 
The measurement of the machine tool (described in Section 3) was done by an instrument 
that measured machine tool errors at points on a plane above the parts production surface. 
Estimates of this height were not obtained at the time the machine tool error 
measurements were made. Therefore, the model as finally used in this report does not 
contain terms that include the errors due to this height difference. In future error 
measurements of similar machine tools these terms should be included. Since the object 
of this report was to develop a methodology, the authors feel that this oversight does not 
invalidate the overall procedures developed. 
 
A review of the related research literature is given in Section 2.  Section 3 briefly 
describes the machine tool measurement procedure and the part design. Section 4 
describes the kinematic model of a three axis machine tool along with the methods of 
estimating errors for point location, linear distances, orthogonalities and circularities.  
The uncertainty estimates for CMM measurements of the parts are given in Section 5. 
The comparative results are given in Section 6 with some final conclusions given in 
section 7. 

                                                 
1 The term “error” used in this report is used in the machining sense to refer to axis errors, e.g. linear axis 
errors, straightness errors, or orthogonality errors, rather than in the statistical sense. 
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2.0 Related Research 
 
Various authors discuss different aspects of the problem of machining uncertainties.  
Under a controlled set of experiments Wilhelm, Srinivasan and Farabaugh [4] have 
demonstrated that the measured behavior of the machine tool could be related to 
variations found in prismatic part features cut on that machine tool. The machining and 
metrology conditions were tightly controlled. A horizontal machining center was used. 
Parts, with features similar to those in the current study were cut. The results indicated 
that most part errors fell within two standard deviations of the machine errors. However, 
under uncontrolled conditions, a recent study by Chatterjee [5] has shown that there is a 
significant deviation in machine tool performance between static and operating 
conditions, where machine parameters are likely to vary due to cutting and thermal loads.  
 
Shin and Wei [6] developed a kinematic model for a multi-axis machine tool in order to 
predict deterministic errors. They added stochastic terms to the predicted errors and 
theoretically estimated the means and variances of the kinematic errors, but provide no 
experimental data comparison  
 
The inaccuracies that relate to drilling operations have been studied by a number of 
authors.  These results, however, are in general experimental or analytic in nature and are 
not formulated in terms of uncertainties.  Kaminski and Crafoord [7] state that drilling 
operations give rise to forces in the X, Y and Z directions as well as torque.  They found 
that the tool deflects more under dynamic cutting conditions than under static simulated 
force loads.  Lehtihet and Gunasena [8] use a simulation to show the influence of 
tolerance specification, size of the tolerance zone, hole size density, and production errors 
on the probability of producing an acceptable hole.  Lee, Eman and Wu [9] discuss a 
mathematical model for drill wandering motion to explain the formation of odd-sided 
polygonal holes during initial penetration.  Fujii, Marui and Ema [10, 11, 12] find that the 
drill point deflects along an elliptical orbit during whirling vibration.  Magrab and Gilsinn 
[13] model a drill bit as a twisted Euler beam under axial loading that is clamped at both 
ends. The representative set of modes obtained exhibit a complex out-of-plane twisting-
type motion that suggests a possible explanation for the out-of-roundness of certain 
drilled holes.  
 
In a work that relates to the current report Shen and Duffie [14, 15] develop an 
uncertainty analysis method that allows the modeling and computation of component 
error uncertainty sources that lead to coordinate transformation uncertainties.  They show 
how uncertainties propagate in the homogeneous transformations of points, products of 
transformations and inverse transformations.  They characterize the uncertainties 
associated with workpiece positions and orientations in terms of two components, a bias 
and a precision uncertainty component. They demonstrate that the bias and precision 
components can be propagated independently and combined to represent the uncertainties 
of the coordinate transformation relations. They validate the method by using Monte 
Carlo simulation (Bauer [16]).  
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Several recent papers relate measurement uncertainties in CMM measurements to the 
sampling strategy. Yau [17] proposes a general mathematical basis for representing 
vectorial tolerances. He develops a nonlinear, best-fit algorithm to evaluate vector 
tolerances for both analytic geometric elements and free-form surfaces. He then studies 
the uncertainty of the best-fit result caused by the sampling strategy and dimensional 
errors.  Phillips et al. [18] examine the uncertainty of small circular features as a function 
of sampling strategy, i.e. the number and distribution of measurement points. They study 
the effect of measuring a circular feature using a three-point sampling strategy and show 
that the measurement uncertainty varies by four orders of magnitude as a function of the 
angular distribution of the measurement points. 
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3.0 Parts Manufacturing and Machine Metrology 

 
3.1 Milling Machine Specifications 
 
The milling machine used to manufacture the test parts (Figure 1) is a three-axis vertical 
machining center with an X-axis (Longitudinal table) travel of 1020 mm (40 in), a Y-axis 
(Cross table) travel of 762 mm (30 in), and a Z-axis (Vertical head) travel of 560 mm (22 
in). The programming resolution for all three axes is 0.001 mm (0.0001 in). The 
repeatability is reported by the machine manufacturer as 0.005 mm (0.0002 in) by the 
VDI 3441 method and +/- 0.0025 mm (+/- 0.0001 in) by the JIS 6330 method. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

3.2 Parts Desig
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holes in the cent
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squareness.  The
performance of 

 

 Figure 1: Three-Axis Machining Center
 

n 

 in Figure 2, was designed to illustrate several characteristics of the 
r. The holes around the outer edge have several purposes. First, drilled 
er were used to compute uncertainties in drilled hole center positioning. 
uter holes allowed comparison of milled hole centers to the drilled hole 
e square with 150mm sides was machined to check the orthogonality or 
 of the machine’s X and Y axes.  This property is sometimes called 
 large internal circular features were cut in order to test the contouring 
the machine. 
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Figure 2: Test Part Specifications. Dimensions are in millimeters 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.3 Measuring the Vertical Machining Center 
 
The dimensional accuracy of the work piece is affected by the errors of the various 
positioning elements of the machine tool which contribute to the positioning accuracy of 
the cutting tool. Each machine element normally has one degree of freedom of nominal 
motion. But, there are six error components associated with each axis of motion. These 
six error components consist of three translations along, and three rotations about the 
three coordinate axes(roll, pitch and yaw). They are referred to as parametric errors, and 
in general are functions of axis position. For a three-axis machine tool there are twenty-
one error components (six for each axis and three axis orthogonality errors). 
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ASME B5.54 [19] outlines techniques for performing parametric error measurements of 
machine tools using instruments such as laser interferometers, precision straight edges, 
capacitance gauges, and electronic levels. The use of these devices to perform error 
component measurements requires care and considerable time.  Kakino, Ihara and 
Nakatsu [20] report the results of using a telescoping magnetic ball bar to measure 
circular motion errors of NC machines. They develop a formula that relates the radial 
displacement errors of the telescoping magnetic ball bar to the machine position error 
vector at a nominal point in the NC machine tool work volume.  However, direct 
measurements of the spatial position of the tool are made feasible by using a metrology 
device that measures spatial positions by trilateration, called a laser ball bar (LBB) (see 
Figure 3). Trilateration is a technique in which a tetrahedron is formed with three base 
points (vertices) attached to the machine table, and the fourth attached to the tool holder. 
The three base points define a coordinate system. Simple geometric relationships allow 
the spatial coordinates of the fourth point or tool to be determined relative to this 
coordinate system. As the tool moves through space relative to the table, the lengths of 
the edges change causing the tetrahedron to deform. The LBB uses interferometry to 
measure the lengths of the tetrahedron edges and thus the tool position. The resulting 
measurement includes all effects which can cause positioning error: geometric, thermal 
and elastic. For a detailed discussion of the LBB and a comparison of the results of LBB 
measurements with ASME B5.54 measurements see Ziegert and Mize [21]. For a 
discussion of the use of a LBB in dynamic path measurements see Schmitz and Ziegert 
[22] and in modeling and predicting thermally induced errors see Srinivasa and Ziegert 
[23]. 
 
Various error components of the machine tool are measurable by the LBB. For example, 
when a single axis of a machine is actuated, the tool point is intended to move from the 
starting point to the ending point in a straight line. The distance between the starting and 
ending points should be exactly the displacement commanded. If it is not, then the 
machine is said to exhibit a linear displacement error. In general, the amount of the linear 
displacement error is a function of the axis position and direction of motion. Due to 
imperfections in the guideway system, the actual motion deviates from a perfect straight 
line. These deviations are termed straightness errors. The individual axes of a machine 
tool are constructed to provide axis motions which are perpendicular to each other. Due 
to imperfections in the machine construction, the actual motions of the axes are not 
exactly perpendicular. These errors are called axis alignment errors or squareness errors. 
Besides measuring displacement, straightness and squareness errors the LBB can 
measure the angular errors exhibited by the axes during motions. These are called roll, 
pitch and yaw. The measurement of these angular errors is accomplished by replacing the 
single tool socket with a fixture which holds three sockets, one of which is on the spindle 
centerline. The center socket is used to determine the linear displacement and straightness 
errors. Due to orientation changes, the displacement of the other two sockets will not be 
the same as the first. The LBB uses the difference in displacements of the three sockets to 
determine roll, pitch and yaw errors of the machine axis at each point along its travel. 
 

 12



The machine measurements were made by the following procedure. Five passes in both a 
forward and reverse direction were made in a large work volume that contained the 
smaller work volume enclosing the machined parts. This provided ten sets of data as a 
basis to model each of the error components of the milling machine.  The LBB measured 
all twenty-one error components that define the errors for a three-axis mill. The data was 
used to develop regression models of the error components as functions of the positions 
along each machine axis.  All five passes by the LBB were performed consecutively over 
a period of eight hours. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 3: Laser Ball Bar Configuration 
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4.0 Part Uncertainty through Model Prediction 
 
Predicting part uncertainty by using a kinematic machine tool model requires a number of 
approximations. The first approximation assumes that the various error components 
combining to form a kinematic model of the machine tool errors enter in a linear fashion 
only. This is reasonable when the order of magnitude of the error components is 
examined. Any higher powers of the components become negligible. Second, the 
measurement of the machine error components indicate thermal drift of the errors 
between measurement repetitions as will be shown below. The authors recognize that the 
drift existed but could not control it during the measurement process. Thus for the 
purpose of this study the drift curves are treated as bona fide repeat curves and the 
resulting analysis will be assumed to be overly conservative. Finally, in order to estimate 
such quantities as circularity that are not defined in an analytical form, Monte Carlo 
simulation must be used in which an approximation to the distribution of the coverage 
factor for point uncertainties must be made. This will be discussed further below. 
 
In this section, a kinematic model of the machine tool, described in Section 3.1, will first 
be constructed. The error components entering into this kinematic model will then be 
shown to exhibit a linear trend over the workspace of the manufactured parts. A general 
analysis of point location uncertainties, based on this model, will then be given. Using the 
point uncertainty estimates an analytic method will be developed to estimate length 
uncertainties between feature points. Both analytic and Monte Carlo methods will then be 
used to estimate orthogonality uncertainties. Finally a Monte Carlo procedure will be 
used to estimate circularity uncertainty. 
 
4.1 Kinematic Model for a Milling Machine 
 
The following notation will be used to describe the kinematic model for the three axis 
mill. 
1. )(yxα   -  Angle between the X and Y axes 
2. )(zxα  -  Angle between the X and Z axes 
3. )(zyα  -  Angle between Y and Z axes 
4. )(xxδ  -  X-Axis Scale Error 
5. )( yyδ  -  Y-Axis Scale Error 
6. )(zzδ  -  Z-Axis Scale Error 
7. )(xyδ  -  Y Straightness of X 
8. )(xzδ  -  Z Straightness of X 
9. )(yxδ  -  X Straightness of Y 
10. )(yzδ  -  Z Straightness of Y 
11. )(zxδ  -  X Straightness of Z 
12. )(zyδ  -  Y Straightness of Z 
13. )(xxε  -  X Rotation of X (roll of X) 
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14. )(xyε  -  Y Rotation of X (pitch of X) 
)(x15. zε  -  Z Rotation of X (yaw of X) 

16. )(yxε  -  X Rotation of Y (pitch of Y) 
   of Y) -  Y Rotation of Y (roll17. )yy (ε

)(yzε18.  -  Z Rotation of Y (yaw of Y) 
19. )(zxε  -  X Rotation of Z (pitch of Z) 

0.2  )(zyε  -  Y Rotation of Z (yaw of Z) 
21. )(zzε  -  Z Rotation of Z (roll of Z) 
 
Three of the straightness errors must be modified to form genera
due to the angular errors between axes. In particular 

lized straightness errors 

 
yyy xx ∆+ )()( αδ1. A generalized X-straightness error of Y motion is given by . 

2. A generalized X-straightness error of Z motion is given by ∆ xx zzz + )()( αδ . 
3. A generalized Y-straightness error of Z motion is given by zzz ∆yy + )()( αδ . 
 
In these formulas y∆  and z∆  represent incremental steps along the Y and Z axes. 
 
The construction of the kinematic model along the lines of Donmez [24] begins by 
assuming that a reference axis system is established by setting the part zero at the lower 
left corner of the part. The vertical, or Z, axis system is initialized vertically over the pa
zero but offset from it by a tool offset, 0z . To model a drilling operation three steps are
performed. First, the Y slide is moved forward, or in the negative Y direction. This sl

rt 
 

ide 

 
).  

The motion of the Y slide with respect to the reference axis system is modeled by the 
product of an ideal motion matrix and the motion error matrix. This is given by 
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The motion of the X slide with r led by the product of an 
ideal motion matrix and the motion error matrix. This is given by 
 

carries the X slide along and holds the Z slide fixed. The second step is to move the X 
slide to the left and hold both the Y and Z slide fixed. Finally the Z slide is moved in a
downward or negative Z direction to produce the drilled hole (See Figure 4 below
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The motion of the Z slide with respect to the reference axis system is given by the 
product of the ideal motion matrix and the moti s 
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Z slide involves only an identity matrix as 
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he matrix relating the work piece point relative to the reference axis, ,  is given by 
the matrix product 

 
The work piece point with respect to the X  slide involves only a translation matrix
that 
 

⎟⎟
⎟

⎜⎜
⎜ 100 yw

⎟
⎟
⎞− x

on error matrix a

⎟⎟
⎟
⎟

⎜
⎜
−

−−
⎟
⎟

⎜⎜
⎜
⎜=

)(1)()(
)()()(1)(

100
0010

zzz
dzzzzz

z
T yyxz

z
R

δεε
αδεε

.           (4) 

Finally the tool point with respect to the 
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and the matrix relating the tool tip to the reference axis, ,  is given by the matrix 
uct 

 

.                    (7) 

s, are given by 

t
RT

prod

t
z

z
R

t
R TTT =

 
The error matrix relating the tool point to the workpiece, E,  is then given by 
 

w
R

t
R TTE 1−= .                  (8) 

 
Using a symbol manipulator, such as MACSYMA, it is possible to compute the 
displacement errors of the work point with respect to the zero reference point (see 

ppendix E). These errors , ignoring cross-products and higher-order termA
 

)()()()()()()()()( xzzzyyzxxyyyzyyE yxxxxzxyzx εααδδεδεε ++−−++++=

)()()()( yzxxxy )()()( xzzzzE xyyxyzyy εαδεδεδ −−+−= −+ ,         (9) 

yxxyyy xyzxzE )()()( zxx zz)()()( δδεεδε −+−++−= . 

erization 
rocedures outlined in the literature ASME B5.54 [19]. However, in this study the LBB 
ethods described in Section 3.3 were used. Although most of these errors are 

repeatable, there is always a measurable amount of variation in the machine behavior due 
to various factors influencing the machine performance. These variations result in the 
variation of the estimates obtained by the kinematic equations given in equation (9) as 
well as the variation in the machined part dimensions and form. 
 
Since only planar errors are to be studied in this report any terms in equations (9) that 
involve a z coordinate value are dropped so that the final equations used to analyze the 
data are given by the following equations. 
 

 
Equation (9) provides a formula for combining individual machine error components to 
estimate the resultant positioning error between the tool and the work piece. Individual 
rror components can be obtained using machine tool metrology characte
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In order to evaluate these formulas the first task was to develop equations for each of the 
components that relate the component errors to the coordinates x and y. 
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Figure 4: Kinematic Model Axes Systems
  Regression Models for the Component Errors 

order to compare the results obtained from modeling machine tool errors with those 
asured on parts produced on the machine the strategy was to align the coordinate 
tems so that the origins and axes overlap.  The data taken by the LBB was measured 
ative to the machine’s coordinate axis. The first step in modeling the data was to locate 
 part origin for measurements within the machine coordinate system. This was the 
int used as the part origin when the parts were measured on a CMM.  Although the part 
gin for machining was taken as the center of the part shown in Figure 2, the part origin 
 measurements was taken as the lower left corner of the inner 150 by 150 mm square. 
e component error data on the machine tool was taken by the LBB relative to the 
chine coordinate system in steps of 25.4 mm in both the x and the y direction, with 
enty-five steps in the x direction and twenty-six steps in the y direction. For each of 
se points there were ten data values. The part origin for measurement in the machine 
rdinate system was located within one of these intervals for x and one for y.  The 
an values of the ten data values for each of the error components were computed and 
ir values were interpolated to find the values of the components at the part origin for 
asurement.  The data and the x and y scales were then shifted so that the part origin for 
asurement became the zero in the x and y coordinate system and the mean component 
ors at the part origin for measurement also became zero. This process aligned the on-
chine measurements by the LBB with the part measurements made on the CMM. 
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Figures 5 through 10 below show the shifted data values recorded by the LBB for six of 
the seven critical error components. The figures show linear trends in the error 
components over the work volume of the test parts.  Simple linear regression models 
were fit to each of the six data sets. Since eight of the measurement steps fell within the 
work volume of the part being milled, only the data from those eight entered the 
regression analysis.  In that case  n = 80 observations were made for each of the six error 
components  
 

)(),(),(),(),(),( yxyyxx zzxyyx εεδδδδ  
 
These observations were comprised of ten observations at each of eight locations in each 
of the x and y coordinates. The measurements have been normalized to part zero so that 
the zero point on the horizontal axis represents the part zero. Both forward measurement 
beginning from the left in the figures below and reverse measurement show backlash 
error.  
 
The figures show a definite effect of thermal conditions. There is a general tendency of 
the graphs for the displacement and straightness errors to rise as the number of runs 
increases.  The angular error components rise through the third pass, with retreat 
indicating a reversal of rotation after about five hours of continual running.  This thermal 
effect introduces a nonstationarity in the data so that traditional assumptions of the 
distribution of sample repetitions can not be applied, but for the purpose of this study 
they can be considered as legitimate repeats and the resulting analysis accepted as overly 
conservative. 
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Figure 5: LBB Measurements of X Displacement Errors
Showing the Mean Least Squares Trend Line with 
Uncertainty Band Using a Coverage Factor of 2 
19



 

-50 0 50 100 150 200
-8

-6

-4

-2

0

2

4

6

8
Y straightness of X

x mm

dy
x 

  m
ic

ro
m

et
er

s

Run 1 f
Run 1 r
Run 2 f
Run 2 r
Run 3 f
Run 3 r
Run 4 f
Run 4 r
Run 5 f
Run 5 r
Upper Uncertainty
Mean
Lower Uncertainty

 
Figure 6: LBB Measurements of Y Straightness of X Errors 
Showing the Mean Least Squares Trend Line with 
Uncertainty Band Using a Coverage Factor of 2 
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ure 7: LBB Measurements of Y Displacement Errors 
howing the Mean Least Squares Trend Line with 
Uncertainty Band Using a Coverage Factor of 2 
20



 
 

Fig
Sh  
Ba

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

-50 0 50 100 150 200
-5

0

5
x 10-5 Z rotation of X

x mm

ez
x 

ra
di

an
s

Run 1 f
Run 1 r
Run 2 f
Run 2 r
Run 3 f
Run 3 r
Run 4 f
Run 4 r
Run 5 f
Run 5 r
Upper Uncertainty
Mean
Lower Uncertainty

 
Figure 9: LBB Measurements of Rotation About Z with X 
Motion Errors Showing the Mean Least Squares Trend Line 
with Uncertainty Band Using a Coverage Factor of 2 
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ure 8: LBB Measurements of Y Straightness of X Errors 

owing the Mean Least Squares Trend Line with Uncertainty
nd Using a Coverage Factor of 2
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Figure 10: LBB Measurements of Rotation About Z with Y 
Motion Errors Showing the Mean Least Squares Trend Line with 
Uncertainty Band Using a Coverage Factor of 2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The LBB measurement of the angular error between the x and y axes is independent of 
coordinate position. Table 1 gives the errors measured by the LBB in arc seconds and 
radians. The mean error in radians, estimated standard deviation and degrees of freedom 
are also given. These are used to estimate the confidence interval of a future observation 
of the angular error. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2 gives the slope and intercept values for the linear trend equations describing the 
error components shown in Figures 5 through 10. 

Angular Error Between X and Y Axes 
Pass # Error (arcsec) Error(radians) 

1 -6.99 -3.39-05 
2 -6.43 -3.12E-05 
3 -7.39 -3.58E-05 
4 -6.76 -3.27E-05 
5 -6.79 -3.29E-05 
 Mean -3.33E-05 
 Est. Std. Dev. 1.67E-06 
 Deg. Of Freedom 4 

 
Table 1: LBB Measurements of the Angular 
Errors Between the X and Y axes 
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4.3 General Propagation o
 
In order to estimate the unce
assumption is made that the
estimate the cross correlatio
 
According to the  Law of Pr
Taylor and Kuyatt [2], Cole
E, such as those in equation
uncorrelated 
 

then the combined uncertain
of the components, ignoring
 

u

 

 

  Kinematic Error component Coefficients 

 Displacement Errors 
 Slope Intercept 
 Nondim. mm 

 -1.89E-05 1.04E-04 )(xxδ

 -3.78E-06 5.16E-04 )(xyδ

 -1.823E-05 1.38E-03 )(yyδ

)(yxδ  -3.88E-06 8.55E-04 

 Rotational Errors 
 Slope Intercept 
 Nondim. radians 

 -2.87E-08 5.73E-06 )(xzε
 -5.62E-08 )(yzε 3.52E-06 

 X-Y Axes Angle Error 
 Slope Intercept 
 Nondim. radians 

xyα  0.0000E+00 -3.33E-05 

 
Table 2: Error Component   
Coefficients
f Uncertainties Using the Kinematic Model 

rtainties associated with the resultant errors a preliminary 
 individual error terms are uncorrelated since it is difficult to 
n of the different dimensional errors.  

opagation of Uncertainty, outlined in the ISO Guide [1], 
man and Steele [25] and Wheeler and Ganji [26], if a variable 
 (9), is a function of  N stochastic components that are 

),, N( 1fE γγ=         (11) 

ty of E, c , can be estimated in terms of the uncertainties 
 second order terms, by 

)(Eu

2
f2 2( ) ( )

N

c iE u
1i i

γ
γ

⎛
≈ ⎜ ⎟∂∑         (12) 

⎞∂

= ⎝ ⎠
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The variances of the positioning errors in equation (9) can be computed from the 
propagation of uncertainties law by taking the appropriate partial derivatives as 
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rtainties ycxc uuEu  one has to determine the 
ncertainties of individual error components using machine characterization data.  

 
t 

222222222 yuyxuxuyyuyuyyxEu αδεδε ++++=

he approximation here is that the components are taken to be uncorrelated. Since the 
measurement instrumentation used did not u us measurements of all 
omponent errors the assumption is necessary but simultaneous measurement is 

r

ncertainties of the components can be estimated from their equations.  The methods 
ery and Peck [27].  Since the component errors are modeled as 

linear equations their regression equations take the form 
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To evaluate the unce )( zc EE ),(),(
u
For completeness, equation (13) gives the error vector at any given point (x, y, z) in the
workspace, but since only uncertainties associated with planar features are of interes
here the uncertainty equations reduce to 
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conside ed a standard in scientific work. 
 

he uT
are described in Montgom

εβ += Xy   (15) 
 
where ε  refers to the regression error, not to be mistaken for the rotational errors above, 
and 
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servations. X is an n x 2 matrix of the regressor 
ariables.
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In general, y is an n x 1 vector of ob
v  β  is a 2 x 1 vector whose components are: 1β  the line intercept and 2β  the 
line slope. ε  is an n x 1 vector of random errors. 
 
The least squares estimator of β is given by the well kno wn formula  

T 1)(ˆ −=β 7) 

 
is 

xy = 8) 

 
yX T   (1XX

 
Given a coordinate 1x , which could be along the x or y coordinate axis depending on the
approximate error component equation that is being evaluated, the predicted value 
computed as 
 

β̂T   (1ˆ
 
where [ ]11 x=  is the regressor variable.  
 
The regression model (15) can be used to predict a particular value of 0y  corresponding 
to a specified level of regressor variable of 0x . In particular, let 

xT

[ ]010 1 xxT = , then a 
point estimate of the future observation 0y  is given by (18) as 
 

β̂ˆ 00
Txy =   (19) 

 
nder the conditions that the repetition samples and their standard errors satisfy certain 

obability distribution requirements a confidence interval for this predicted 
ation is 
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where pk  is the coverage factor, taken here as 2=pk  [ 2]. This interval is referred to
a prediction interval for a future observation of 0y  [27].  It is more conservative tha
onfidence interval for the mean, but it is more meaningful for of parts production.  For 

 as 
n the 

 
c
the rest of this report the use of the term confidence interval will mean the prediction
interval.  Also for the rest of this report the term 0

1
0

2 )(1(ˆ xXXx TT −+σ  will be refe
to as the standard uncertainty with the understanding that it is the standard error of a new 

rred 

observation given a value of the regressor variable. The expanded  standard uncertainty is 
then 
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ith y being the data used in (16). 

igures 5 through 10 show the linear 
ower uncertainty bands based on the ) a coverage factor of 2. The 

 estimate an uncertainty 
terval for the next observation for a linear regression problem, can also be used to 

estimate an uncertainty interval for the next sample of the angular error given in Table 1. 
lthough the angular error model is considered be a constant, the representation we select 

e 1 and 
e X matrix given by . The parameter estimates are then given by 

ase

(22) 

 
w
 
F equation fit to the data as well as the upper and 

 interval (20  with l
coefficients of the fitted linear equations are given in Table 2. 
 
At this point we will show how the formulas above, used to
in

A
is given by equation (15) with the y vector given by the five angular errors in Tabl

[ ]T11111th

 xy
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,5
)( . Thus the least squares 

model in this case is the mean of the sam les. Furthermore p [ ]10 =x , so that 

5
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1
0 =− xXXx TT .  The coverage factor will again be selected as 2. In this case, th

confidence interval for a future sample of the angular error between the x and y axes is 
given by 
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which for the data in Table 1 is 2.88849e-12 radian squared. Therefore the uncertainty 
interval for a future angular error observation in radians is 
 

595885.2570355.3 −−≤≤−− ee xyα   (25) 
 
where the estimated standard deviation for a future sample is 1.86177e-6 radians. 
 
From the entries in Table 2 above one can substitute estimates into the component error 
equations of the form 
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here the hat notation indicates that these equ ates for the 
les on the left.  The degree of freedom of each of the first six estimates is seventy 

ight, since there are eighty samples used to estimate the linear error component 
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W ations are taken as estim
variab
e
functions, and the degree of freedom of the last is four. The estimates of 2σ for each of 
the equations in (26) are given by 
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With these one can now estimate the variance of the variables on the left of (26) at a 
specific point ) e workspace. These are given by 
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here the subscript cp indicates ut the mean at a 
oint . However, in order to estimate a confidence interval of a future error 
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w  the combined standard uncertainty abo

 ),( 00 yxp
response one must include the fact that the actual observed errors vary about their true 
means with estimated variances given by 
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here the subscript cm refers to the combined standard uncertainty about the mean 
 

E . w
The combined standard uncertainty for a future error response is then computed by the 

uare root of  sq
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here the subscript co refers to a future observation of the errors. These estimated 
ariances are given in tables A1 to A3 in Appendix A for the peripheral hole centers and 
r thirty-six evenly spaced points around the inner and outer rings of the circular slot on 
e part in Figure 2. 
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he prediction error at  can be estimated by substituting (27) through (30) into 
1) and using a coverage factor of 2 to write 

 ),( 00 yxT
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 table of the expanded confidence intervals given by equation (32) is given in appendix 
 for all of the peripheral holes numbered in Figure 5 below. Tables A4 to A6 give the 
rediction intervals for the peripheral hole centers and the evenly spaced points on the 
ner and outer rings. 

4.4  Linear Distance Uncertainties 
 
Estimating distances between hole centers is a planar problem so we will only be 
concerned with the x and y errors at the hole centers. Suppose then that two points, 

 and , are given on a part, such as the centers of two drilled holes. Each of 
these points has an error associated with it, given by  and 

. The length, 
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and the nominal length, ,  is computed from 
 

.        (34) 

 
Since the variance of the actual length is approximately the variance of the estimated 
length, i.e. , then, using equations (33) and (34), the estimated variance 
of the actual length is given by (see Appendix D) 
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The validity of this equation depends on the independence of the errors 

).,(),,(),,(),,( 22112211 yxEyxEyxEyxE yyxx   
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Using equation (35) three length uncertainties are estimated. These uncertainties are 
ompared with uncertainties obtained from measuring the parts on a CMM. More 

 

 A1 in the 

ion (33).  The error uncertainties are also taken from Table A1 and 
e length uncertainty is computed by equation (35).  The expanded prediction interval is 

 

 
 
 
 
 
 
 
 
These tables
centers is le

c
distance uncertainties could be computed but the authors felt that the lengths chosen
reflect the essential nature of the part uncertainties in general. The lengths chosen are the 
center-to-center lengths from hole number three (3) to hole number nine (9), from hole 
nine (9) to hole fifteen (15), and finally from hole three (3) to hole fifteen (15).  The 
predicted point uncertainties for each of the three points are taken from Table
appendix, along with the nominal center locations.  The estimated length is then 
computed using equat
th
computed using a coverage factor of two. The results are given in Tables 3 and 4 below. 
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  X Axis    
ole 
mber 

Nominal 
)(mm  

Error 
)( mµ  

Variance 
2)( mµ  

Uncertainty 
)( mµ  

Expanded 
Uncertainty 

)( mµ  
3 10 1.15 6.86 2.62 5.24 
9 10 5.04 20.96 4.58 9.16 
15 140 2.07 20.83 4.56 9.12 
  Y Axis    

ole 
mber 

Nominal 
)(mm  

Error 
)( mµ  

Variance 
2)( mµ  

Uncertainty 
)( mµ  

Expanded 
Uncertainty 

)( mµ  
3 10 1.63 22.60 4.75 9.50 
9 140 -0.75 22.55 4.75 9.50 
15 140 -1.43 31.23 5.59 11.18 

Table 3: Line End-Point Uncertainties
  Length Uncertainty    
 Nominal Estimated Error Variance Uncertainty 

)(mm  )(mm  
)(mm

2)( mµ  )( mµ  
Expanded 

Uncertainty 
)( mµ  

3 – 9 130 129.998 -0.002 45.1 6.72 13.44 
9 – 15 130 129.997 -0.003 41.8 6.47 12.94 
3 - 15 183.848 183.846 -0.002 40.7 6.38 12.76 

Table 4: Line Length Uncertainties 
 are consistent in that the uncertainties squared of the lengths between hole 
ss than the sum of the squares of the component uncertainties. 
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4.5 Orthogonality Uncertainties 
 
If the part shown in Figure 2 and Figure 11 were ideal then the line through holes 9 
through 15 would lie at right angles to the lines through holes 9 through 3. However, real 
arts seldom, if ever, satisfy this property. In general there is a small angular difference 

between the actual angle that the two line  for  a right angle. This is termed an 
rthogonality error. Each copy of the same part will have a slightly different 

 of these orthogonality errors is the 
pic of this section. 

 
ince each of the hole centers has a point uncertainty this means that there is error in both 

es a problem with finding the best 
ne through the centers of the holes. Assume that we are given points 

and we wish to find he l
ssumption behind the least squares estimation of coefficients is that the linear first order 

p
s m and

o
orthogonality error. The uncertainty in the distribution
to

S
the x and y positions of the center. This fact introduc
li

),(,),,( 11 NN yxyx   t east squares line through the points. The 
a
model can be written as εββ ++= xy 10  where the ε  term represents the deviation in 

8]. 
d errors in variables.  

 this report we will use two different approaches. The first is a technique suggested by 
oleman and Steele[25] in which the uncertainties in the least squares coefficients 

the y variable from the line. Thus all of the error in the approximation is assumed to be 
relegated to the y variable and the x variable is assumed to have no error. The problem of 
fitting equations to data in which both variables are subject to error, see e.g. Mandel [2
The relevant methods are calle
 
In

10 ,ββ  C
are connected to the uncertainties in the data points themselves. The second is a Monte 

arlo approach in which the x and y distributions of the hole centers are sampled a large 
umber of times, horizontal and vertical lines fit to the resulting points, and angular 
ifferences from right angles computed. The uncertainty in this large sample of 

 the 

C
n
d
orthogonality errors can then be computed. 
 
In the first of the two methods (Coleman and Steele[25] ) the assumption is made that
points ),(,),,( 11 NN yxyx  are given data points and the usual least squares estimates of 
the slope and intercept are given by  
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Each of these coefficients can be thought of as functions of the data points so that 
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Using the propagation of uncertainties formula one gets 
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error term of the 
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where we assume that each point is the sum of a nominal point plus an 
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o get the uncertainties on the right hand side of (38) one uses the fact that  

(40) 

he orthogonality errors only require computing slope differences so that we only need to 
ompute the partial derivatives of the slope 
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where ),( ii yx  are given by (39). For the case of the vertical lines between hole cente
one fits x against y and the roles of x and y in (41) reverse. 
 
The fitted horizontal and vertical lines will take the form 
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Since the slopes are small and the tangent of a small angle is approximately the angle in 
radians one may equate the slopes with angles. But in order to preserve the sign 
convention with respect to the horizontal axis the slope of the vertical line in (42) must 
have its sign changed. Thus the two angles are given by 
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and the difference, or orthogonality error, is given by 
 

12 θθθ −=∆  (44) 
 
The uncertainty of the orthogonality is computed as 
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here the last two uncertainties are computed using (38), (39) and (41). 

2 ∆

The uncertainty of the orthogonality of the part was estimated using the horizontal holes 
3, 26, 25, 24, 23, 22, 21 and the vertical holes 3, 4, 5, 6, 7, 8, 9 shown in Figure 5. No 
xpansion factor is used here. 
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Analytic Estimate of Orthogonality Standard Uncertainty 
-5.10 11.09 

Table 5: Analytic Estimates of Orthogonality Uncertainty in arc sec. The 
Uncertainty is not Expanded. 
d approach to estimating the unc tain he orthogonality error is by means of 
 Carlo simulation. To generate an orthogonality error angle twenty eight (28) 

 sa m a normal distribution with zero mean and unit 
 deviation, since there were fourteen holes used to estimate orthogonality. There 

en two random numbers associated with each hole, one for x and one for y, 
ted b . For each of the fourteen hole centers the following simulated points 
mputed 
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The horizontal and vertical least squares lines through the appropriate new hole centers 
 

and vertical line combination 
were computed using (36) for the horizontal lines and the appropriate equations for the
vertical lines. For each horizontal θ∆  was computed using 

2) through (44).  This process was repeated a large number of times, M, and the 
estimated standard deviation 
(4

σ̂ was computed. The prediction uncertainty was given by 
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M
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he results from a simulation with M =1000 is given in the table below. 
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Mean Orthogonality 
(arc sec) 

Sample Standard 
Deviation (arc sec) 

Standard 
Uncertainty (arc sec) 

-4.68 11.02 11.03 

Table 6: Orthogonality Uncertainty. The Uncertainty is not 
Expanded. 
elow shows the distribution of the orthogonality samples. 
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Figure 12: Distribution of the Orthogonalities for 1000 samples. 
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4.6  Circularity Uncertainties 

 ISO 230-4 [29] on circular tests for numerically controlled machine tools circular 
eviation is defined as the minimum radial separation of two concentric circles 
nveloping the path produced by the machine tool when programmed to move on the 
ircular path defined by its diameter (or radius), the position of its center and its 
rientation in the working zone. Optionally the circular deviation may be evaluated as the 
aximum radial range around the least squares circle.  The first definition requires 

omputing the minimum zone circles which can be formulated as a linearly constrained 
ptimization problem. The algorithm for computing the minimum zone circles is 
fficiently complex that, for practical purposes, the approach of selecting a least squares 

ircle provides a tool that can be used in a Monte Carlo simulation to estimate the 
ncertainty of the circular deviation or circularity. The algorithm used here to fit the least 
uares circle is the Marquardt-Levenberg, based on an algorithm described in Nash [30]. 
 discussion of the algorithm is given in Appendix F. 

 order to compare the estimated uncertainties with the results of measurements of the 
arts on a CMM, the same nominal points on the inner and outer walls of the circular slot 
ature of the parts were selected. There were thirty six points (36) selected on each wall 

round the circular profile. This meant ten degrees between each nominal point.  The 
ominal points were designated as . The estimated circularity and its 
ncertainty were calculated by a Monte Carlo simulation. First one thousand random 
umbers were sampled for each point from a normal distribution with a mean of zero and 
andard deviation of one and designated  for 
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 )1000,(,),1,( iRiR xx 36,,1=ist . Another 
ne thousand samples were selected from the same distribution for each point and were 
esignated  for 

o
d  )1000,(,),1,( iRiR yy 36,,1=i . For each group of thirty-six random 
umbers, new x and y points were generated using (46). Thus, for the kth Monte Carlo 
mulation from one to a thousand the new points were computed as 

n
si
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  (48) 

ext, a least squares circle was fit through these points using the Marquardt-Levenberg 
onlinear optimization procedure. This produced the best fit center for the data. The 
istance from this point to each of the thirty-six new points was computed and the 
ircularity was computed as the maximum of these distances minus the minimum. This 
rocedure was repeated a thousand times. The distribution of the circularities is given in 
e histograms in Figures 13 and 14. The corresponding prediction uncertainty for a 

future sample is given by 
 

 
N
n
d
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where  is the sample variance 
 

2σ̂
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sing a coverage factor of two the prediction interval for the inner circular slot edge, 

 
 
. 
 
 
 
 
 

Mean Circularity (mm) Standard Uncertainty (mm) 
0.0179 0.0031 

 
Table 7: Circularity Uncertainty for Inner Circle Feature 

 

U
based on the simulation results is 
 

0241.0)0031.0(20179.0)0031.0(20179.00117.0 =+≤≤−= c  (50) 
 
 
 
 
 

 
 
 

T 
 
 
Using a coverage
based on the simu
 

0118.0 =
 
These results are 
the range (50) or 
 

 

Mean Circularity (mm) Standard 
Uncertainty (mm) 

0.0180 0.0031 

able 8: Circularity Uncertainty for Outer Circle Feature 
 factor of two the prediction interval for the outer circular slot edge, 
lation results is 

0242.0)0031.0(20180.0)0031.0(20180.0 =+≤≤− c  (51)

in millimeters.  The next sample taken would be expected to fall with
(51)

 

in 
 with a 95% confidence.  
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Figure 13: Histogram of the Sampled Circularity for 1000 Samples

of the Inner Circle Feature Circularity. 
0.01 0.015 0.02 0.025 0.03 0.035
0

10

20

30

40

50

60

70

80

90

100
Distribution of Circularity for Outer Path of Circular Slot

Circularity (mm)

B
in

 C
ou

nt
s

 
 

ularity for 1000 Samples Figure 14: Histogram of the Sampled Circ
of the Outer Circle Feature Circularity. 
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5.0 Part Uncerta  Measuring Machine Measurements 
 

wenty one parts made according to Figure 2 were measured on a CMM. The following 
oint locations were measured: the hole center locations for the drilled portion of the 

holes, the hole centers of the milled portion of the holes, thirty six evenly spaced points 
g  edge of the oute spaced points 

ge of the inner circle. Fiv ese points were 
peats were performed on the other 

arts.  

 
i

 

he following notation will be used to estimate the manufactured part uncertainties: 
 
1. - Measured Hole Location Errors along the X and Y axes. 

inties by Coordinate

T
p

alon  the r ring of the circular slot and thirty six evenly 
along the ed e repeat measurements for each of th
made on part numbers one through four, while two re
p
 
In this section an analysis of variance procedure is explained that isolates the 
manufacturing error from the coordinate measuring machine error. Manufacturing and
measurement uncertaint es are estimated.  The analysis of variance procedure is applied 
to estimate the uncertainties of the locations of the hole centers for both drilled and 
milled holes as well as to estimate the orthogonality and circularity. An estimate of the
uncertainty of the distance between features is also developed 
 
 
5.1  Hole Center Location Uncertainties for Manufactured Part 
 
T

m
y

m
x EE ,  

2. a
y

a
x EE ,  - Actual Hole Location Errors along the X and Y axes. 

3. yx ηη ,  - Hole Location Measurement Process Errors along the X and Y axes. 

The main assumption made here is that the actual hole location errors due to the 
anufacturing process and the measurement process errors are uncorrelated. Therefore, 

 be added to estimate the variances of the measured 
ole location errors. 

 

yy

am VEVEV η+=

l relative to 
ppose that the 

easured error variance is a good approximation of the actual manufactured hole error 
variance. That is if  then a

x VEV ilarly for y. 
 

or each machined part, the errors in hole positions are measured by the CMM relative to 
 

uare shown in Figure 2. The X and Y locations of the centers of each drilled and milled 
hole on each of the twenty-one parts were measured a multiple number of times. 

 

m
their corresponding variances can
h

)()()( am
xxx

VEVEV η+=
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)()()(

y

 
If the variances of the measurement process errors can be shown to be smal
the variances of the measured hole location errors then it is reasonable to su
m

)()( m
xx EVV <<η )( m

xE≈  and sim)(

F
a part coordinate system located at the lower left corner of the inner 150 mm X 150 mm
sq

 40



Associated with each hole center one can form two analysis of variance tables, as shown 

ns 

 

he X error for that 
ole. That is, these give estimates of the manufacturing process uncertainties. The 

 estimate of the measurement process uncertainty.  Once the 
anufacturing and measurement uncertainties have been estimated, the part uncertainties 

 
 
 
 
 
 
 
 
 
This analysis of variance template will be used for estimating uncertainties for the hole 
centers, the part orthogonalities and circularities. The analysis of variance techniques 
used are based on the discussions in Dixon and Massey [31] and Mood and Graybill [32].  
The notation used in Table 9 is as follows: 
 

  -  The j-th repetition of measurement of the i-th part for under consideration. 
 

below, one for the X measurements and one for the Y measurements. The table represents 
all of the location measurement errors for the same hole on each of the parts. The 
columns representing the repeated measurements are the errors from the nominal 
measured by the CMM. The column of measurement means is the column of row mea
for the repeated error measurements for the part number of that row. The degrees of 
freedom are then listed in a column. Finally, the column of measurement uncertainties is
the column of standard deviations of the repeated hole location error measurements for 
that row. The column of measurement means itself has a grand mean and a variance. 
These will be taken as the manufacturing error and its variance for t

 
h
column of measurement standard deviations has a variance, called the pooled variance, 
which will be taken as an estimate of the uncertainty of the measurements. This 
uncertainty gives an
m
can be computed from the previous formulas. 
 
 
 
 
 
 
 
 
 
 
 

  Repeat Measurements    
Part # R1 … Rn Mean 

(Manufacturing 
Error) 

Degrees 
of 

Freedom 

Standard 
Deviations 
(Metrology 

Uncertainties) 
1 

11m  … 
11nm  1µ  11 −n  1s  

2 
21m  … 

22nm  2µ  12 −n  s2  
… … … … … … … 
21 

1,21m  … 
21,21 nm  21µ  121 −n  21s  

     
∑
=

−
21

µ  
1

)1(
i

in

 

 

   F Vp(µ )  Vp(s) 

 
Table 9: Analysis of Variance Table for CMM Measurements 

 

ijm

iµ    -  The mean of the repeated measurements for part i. 
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i   -  Standard Deviation of the repeated measurements for part i. 

f   -  Total degrees of freedom. 

p

s
 

∑
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−=
21

1
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ind

 

(µ ) = 
121

))((
21

1

2

−

−∑
=i

iin µµ
V   -  Estimate of the between part uncertainty. 

p(s) = 
df

sn ii∑ − 2)1(
V   -  Estimate of the within part uncertainty. 

he ratio
 
T  )(/)( sVVF pp µ=  is used to determine whether there is a significant difference 

etween the two variance estimates (Montgomery and Peck [27], Chapter 2). For the 
ases of concern here, the test value for the F distribution at the 95% level with 20 
egrees of freedom for 

b
c
d ( )pV µ  and 34 (i.e., 54 – 20) degrees of freedom for , since 

ere are 54 tot
pproximately r 

s  the value above is an interpolation erred to Dixon and Massey 
1] for a discussion of the analysis of variance for a one-way fixed effects classification 
odel. 

t this point we need to introduce some further terminology. Let 

(14) 

e the total number of measurements over all the parts. Then the pooled mean, called the 
ean manufacturing error or grand mean, is given by 

( )pV s
th al measurements for each hole center, over all of the parts, is 

 1.89. Since most tables give values for 30 and 40 degrees of freedom fo
. The reader is ref

a
( )pV

[3
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he pooled standard deviation is 
 
T
 

)(sVs pp =  (16) 

n estimate of the standard uncertain
 
A
 

ty of the grand mean is given by 
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n estimate of the uncertainty of a future measurement sample is given by 
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he corresponding expanded uncertainty of a future measurement will then be taken as 
 
T
 

ff uU 2=  (19) 

ummary tables of these quantities are given in Tables B1 through B4 in Appendix B for 
e measurement uncertainties of each of the peripheral holes for all of the parts. Tables 
1 and B2 summarize the results for the X and Y measurements of the drilled holes and 
ables B3 and B4 summarize the results for the X and Y measurements of the milled 
oles. B o n 
f the t the 
ole ce ird 
olumn gives the uncertainty of a new m  the hole center and finally the 
urth column gives an expanded uncertainty of this measurement. 

ables B.5 through B.8 in Appendix B give a summary of the analysis of variance tables 
r all of the manufacturing errors of all holes for all of the parts. The hole numbers are 

iven in Figure 11. 

igures 15a and 15b below show the mean measured errors for the centers of the three 
rilled holes numbered 3, 9 and 15. These three holes represent the lower left hole, the 
pper left hole and the upper right hole respectively. These holes will be used in the next 
ction to evaluate uncertainties in length measurements. The first thing that can be noted 

bout the measurements is that part 13 shows a significant negative x mean error for all 
ree drilled holes compared to the other parts.  This appears to be reflected in the y mean 

rrors for that part also. These plots reflect the numbers in tables C1, C2, C5, C6, C9 and 
10 in Appendix C. Notice also the significant center location errors for parts 3, 19, 21 
nd 27 (whose stamped part blank was mistakenly machined in place of part 20). 

igure 16b shows sharp error difference for the Y measurements of milled holes 9 and 15 
n parts 6 and 21. This is confirmed by looking at tables C8 and C12. 

 
S
th
B
T
h oth the drilled and milled holes have the same nominal centers. The first c

ables gives the estimates in micrometers of the mean manufacturing error of 
nter. The second column gives the standard uncertainties of the error. The th

easurement of
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Figure 15a: Mean X Errors for the Centers of the Dr

Vertical Axis represents Errors in mm. Horizontal Axis represent
Part Numbers. 
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Figure15b: Mean Y Errors for the Centers of the Drilled
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Figure 16a: Mean X Errors for the Centers o
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Figure 16b: Mean Y Errors for the Centers of the Milled Holes. The 
Vertical Axis represents Errors in mm. The Horizontal Axis represents 

Part Numbers.
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5.2  Estimating the Uncertainty of a Machined Length Feature from CMM 
M ement
 
 

he lengths and uncertainties of these lengths will be examined for the distances between 
 errors and 

mean (

easur s 

T
three holes on the parts machined. The summary statistics of the measured

 10 and 11. The error uncertainties are given for the three hole center features in Tables
variance estimates given in Tables 10 and 11 are computed as the pooled variance of the 

)(µpV ). The measurement variance estimates are computed as the pooled variance 

square roots of the varian timates. Table 10 gives the results for the 
rilled hole centers for feature holes 3, 9, and 15, while Table 11 gives the results for the 

me.  For the purpose of this study, then, the measurement mean for each hole will be 

of the estimated measurement variances ( )(sVp ).  The uncertainty estimates are 
omputed as the c ce es

d
milled square hole centers for the same feature holes. The tables give the nominal 
coordinates of the hole centers, relative to the part origin in the lower left corner. Since 
the measurement of the feature errors are composed of both manufacturing and CMM 
measurement errors, the tables then give the manufacturing error, variance and 
uncertainty of the part feature as well as the CMM measurement variance and uncertainty 
for each feature. The data show that the CMM measurement uncertainties are one to two 
orders of magnitude less than the manufacturing uncertainties. This verifies the 
assumption that )()( x

m
x EVV <<η , and similarly for the Y errors. Thus measured 

variances of hole location errors and variances of actual location errors can taken as the 
sa
taken as an estimate of the manufacturing error for that hole and the measurement 
uncertainty in Table 9 above will be taken as the measurement uncertainty for each hole. 
 

  Summary Drilled Hole Statistics  
       

  X Axis Location  CMM Measurement 

Hole Nominal Error Variance Uncertainty Variance Uncertainty 

Number )(mm  )( mµ  2)( mµ  )( mµ  2)( mµ  )( mµ  

3 10 2.73 641 25.3 1.10 1.05 

9 10 4.99 511 22.61 1.19 1.09 

15 140 -4.52 566 23.79 0.710 0.843 

       

  Y Axis Location  CMM Measurement 

Hole Nominal Error Variance Uncertainty Variance Uncertainty 

Number )(mm  )( mµ  2)( mµ  )( mµ  2)( mµ  )( mµ  

3 10 2.70 1371 37.03 0.743 0.862 

9 140 2.70 1925 43.87 0.678 0.823 
15 140 2.70 2410 49.09 0.982 0.991 

 
      Table 10: tainty S ri , and 15. The  
    Uncert t E ertai

Uncer
ainties are no

tatistics for D
xpanded Unc

lled Holes 3, 9
nties.   
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          Summary Milled Hole Statistics  
    

               X Axis Location        CMM Measurement 

Hole  Nominal  Error Variance  Uncertainty Variance  Uncertainty 

Number )(mm  )( mµ  2)( mµ  )( mµ  2)( mµ  )( mµ  

3 10 11.23 86.92 9.32 1.39 1.18 

9 10 14.79 158.37 12.58 0.834 0.91 
15 140 3.63 202.31 14.22 1.92 1.39 

    

              Y Axis Location         CMM Measurement 

Hole  Nominal  Error Variance  Uncertainty Variance  Uncertainty 

Number )(mm  )( mµ  2)( mµ  )( mµ  2)( mµ  )( mµ  

3 10 12.84 80.80 8.99 0.30 0.55 

9 140 12.84 274.91 16.58 0.19 0.44 
15 140 12.84 417.45 20.43 0.33 0.57 

 
          Table 11: Uncertainty Statistics for Milled Holes 3, 9, and 15. The 
          Uncertainties are not Expanded Uncertainties. 
 
Tables 12 and 13 give the actual lengths and variances of the three hole center to hole 
center lengths for the three line lengths for the drilled and milled holes. These are 
computed using equations (33) and (35) and the values from tables 10 and 11. 
 

Manufactured Length between Drilled Holes  

 Nominal Actual Actual Actual Actual 
Hole-Hole Length Length Error Variance Uncertainty 

 (mm) (mm) )( mµ  2)( mµ  )( mµ  

3 to 9 130 130.0000 0.00 3296 57.41 

9 to 15 130 129.9905 -9.51 1077 32.82 
3 to 15 183.84776 183.8426 -5.12 2494 49.94 

 
Table 1 en ties B d  

ole Cente e Un erta nded nties. 
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Manufactured Length between Milled Hole Centers  

 Nominal Actual Actual Actual Actual 

Hole-Hole Length Length Error Variance Uncertainty 
 (mm) (mm) )( mµ  2)( mµ  )( mµ  

3 to 9 130 130.0000 0.00 355.71 18.86 

9 to 15 130 129.9888 -11.16 360.68 18.99 
3 to 15 183.84776 183.8424 -5.40 393.74 19.84 

 
Table 13: Manufactured Length Uncertainties Between Milled Hole  

enters. The Uncertainties are not Expanded Uncertainties. 
 
 

centers form lines parallel to the edges of the parts. Two nominally orthogonal lines of 
holes (the bottom row and left side row) were selected to estimate the uncertainties in the 
orthogonality of these two lines of holes. All of the twenty-one parts had the milled hole 
centers measured on a high precision CMM with repeated measurements of each part. 
The first four parts had five repeated center measurements and the rest of the parts had 
two repeated measurements. The procedure of estimating orthogonality was as follows: 
 
For the centers of the holes along the Y-axis a least squares fit of the line form y = mx + 
b was made for each of the repetitions for each of the parts. This produced a table of 
slope values for m. Since the deviation of m from 0 was small the values of m could be 
used as angle estimates since for small angles tan(a) ≈ a in radians and m is the tangent of 
the slope angle. Next the vertical line of hole centers was fit with an equation of the form 
x = my + b. The sign of the resulting slope had to be reversed and then it could be added 
to the horizontal slope to determine the orthogonality error.  This calculation is similar to 
that leading to equations (42) to (44).  Table G1 was produced. The grand mean 
represents the mean of all of the orthogonality estimates, including repetitions and is 
properly weighted by the degrees of freedom. The uncertainty of the means is the 
manufacturing uncertainty and the uncertainty of the standard deviations is the CMM 
measurement uncertainty. 
 
We will summarize the results in Table 14 below. The error means and variances come 
from Table G1, while the other entries are based on the formulas in Section 5.1. 
 
 
 
 
 

C

5.3 Estimating the Uncertainty of Machined Part Orthogonality from CMM   
Measurements 
 
 
From Tables B5 through B8 it is clear that the center locations of milled holes have lower 
manufacturing errors. The peripheral milled hole centers were selected as points to be 
used for estimating orthogonality.  The milled holes were designed to have their nominal 
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8.96 1.22 9.05 18.10 

e 14: Summary of the Orthogonality Statistics from CMM 
urements 
f the manufacturing error so that the measured and manufacturing variances 
ered approximately equal. 

 part  

n  

t radius of the 
oints. From these calculations Table H1 and Table H2 were prepared. 

 

variance of the metrology uncertainties is an order of magnitude less than 

g the Uncertainty of a Machined Part Circularity from CMM 
ts 

e s a circular slot was milled with an inner and outer radius (see Figure
surface of the slot was milled counterclockwise and the outer surface was 
ise. Thirty seven equally space poi ts on each surface were measured on
 the resulting radii from the best fit center were reported. Again five 
urements were made on the first four parts and two on each of the others. 

thirty seven measured points on each surface a value for the circularity 
puted as the difference between the largest and the smalles

 16 below summarize the statistics. Terminology is given in Section 5.1.
e are fifty four circularity estimates for each table. 
Mean Manufacturing 
Error )( mµ  

Variance of the 
Manufacturing Errors 

2)( mµ  

Variance of the 
Metrology 

Uncertainties 2)( mµ  

 

20.986 7.378 3.130  
Pooled Standard 
Deviation of the 

Manufacturing Errors 
)( mµ  

Pooled Standard 
Uncertainty )( mµ  

Uncertainty of a New 
Circularity Estimate 

)( mµ  

Expanded 
Uncertainty of a New 
Circularity Estimate 

)( mµ  
2.716 0.370 2.743 5.486 

Table 15: Summary Statistics for Inner Circle of Slot 
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Note that the variance of measurements of the inner wall of the circular wall is less than
the variance of the manufacturing errors in Table 15. Several factors could have 
accounted for this. The inner and outer walls of the circular slot were cut in oppo

Mean Manufacturing 
Error )( mµ  

Variance of the 
Manufacturing Errors 

2)( mµ  

Variance of the 
Metrology 

Uncertainties 2)( mµ  

 

26.018 35.836 2.556  
Pooled Standard 
Deviation of the 

Expanded 
Uncertainty of a New 
Circularity Estimate 

 
Uncertainty of a New 
Circularity Estimate 

Pooled Standa
Uncertainty ( m

rd 
)µ

)( mµ  Manufacturing Errors 
)( mµ  )( mµ  

5.986 0.815 6.046 12.092 
 

Table 16: Summary Statistics for Outer Circle of Slot 
 

 

site 
irections.  Direction of cut may have had an effect in leaving small debris. The inner 

walls m ht not ha hows the measurement 
v n o ude e v anufacturing errors.

d
ig ve been cleaned sufficiently. Table 16 s

ariance to be a rder of magnit  less than th ariance of the m
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6.0  Comparative Results 

 
6.1  Comparison of Hole Location Errors and Uncertainties 
 
When we compare the predicted errors computed from LBB measurements for
peripheral holes given in Table A1, the mean errors measured by the CMM shown in 
Tables B1 through B4 tend to be larger. The manufacturing uncertainties for a given 
feature measurement s

 the 

hown in Tables B5 through B8 are significantly greater than those 
redicted by the LBB measurements. These latter are the square roots of the variances 

be 
 

ter 
they 

easurements falls between 6.81  and 20.96 . For the y-errors the predicted 
.  For the parts measured by the CMM 

m rs 

7 

inties) from the 
model predictions is there some multiple that could be used to estimate conservatively the 
actual manufacturing variances (uncertainties) of the parts for the given machining 
center?  In order to estimate this relation we can start by considering the ratios between 
the lower limits of the manufacturing error variances and the model predicted variances.  
For the drilled holes the lower limit ratio for x-machine errors (511.40/6.81) gives 75.1. 
The upper limit ratio (1279.0/20.96) gives 61.0. For the milled holes the lower x-machine 
error ratio is 12.76 and the upper ratio is 10.1.  For the y-machine error variances for the 
drilled holes the lower limit ratio (1310.32/22.37) is 58.57 and the upper ratio (2489.11) 
is 79.55. Similarly for the milled holes the lower ratio is 3.52 and the upper is 13.66. 
These ratios are not immediately revealing. However, since we are looking for relations 
between the uncertainties which are the square roots of the variances we wish to examine 

p
given in the last two columns of Table A1. 
 
The signs of the errors for both the predicted errors and the measured errors tend to 
consistent for the drilled holes. This does not mean that they are all the same but that they
in general cluster in the same groups. For the x-machine errors the signs clus
negatively between holes twenty-five and fourteen, whereas for the y-machine errors 
cluster between nineteen and six. The consistency does not seem to hold for the milled 
holes. 
 
From Table A1, the range of the predicted variances x-errors based upon the LBB 

2mµ 2mµm
variances fall between 22.37 2mµ  and 31.29 mµ 2

the variances are significantly higher. These are given in column two of Tables B5 
through B8.  For the x-machine errors for the drilled holes the error variances fall 
between 511.40 2mµ  and 1279.0 2mµ . For the illed holes the center x-machine erro
range from 86.92 2  to 211.42 2mµ .  The y-machine error variances tend to be larger. 
For the drilled holes the y-machine error variances fall between 1310.32 2mµ  and 
2489.11 2mµ .  For the milled holes the y-machine error variances fall between 78.7

2mµ  and 427.54 2mµ . We can note here that the y-machine error variances are in 
general greater than the x-machine error variances in both the model prediction and 
CMM measurement cases.  
 
A question arises at this point. If we only knew the variances (uncerta

 mµ
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the square roots of these ratios.  Taking square roots we can see that for the x-errors in 
the drilled case the ratios fall betwee ereas in the milled case they fall 
etween 3.17 and 3.57. Similarly in the y-error cases they fall between 7.65 and 8,91 for 

f we 

.2  Comparison of Length Uncertainties 

 

r 
le shows the upper and lower bounds for the 

ncertainty range.  The uncertainties for the milled hole center-to-center lengths are also 

 

              Drilled Hole  Expanded Uncertainty Range 

n 7.81 and 8.67 wh
b
the drilled holes and 1.88 and 3.70 for the milled holes.  These ranges suggest that, i
wished to estimate the actual machining operation uncertainties for the machining center 
used, then, to be conservative, we could take an uncertainty multiple of 9 for drilling 
operations and 4 for milling operations. 
 
6
 
The uncertainties associated with the three hole center-to-center lengths are summarized
in Table 17 below.  The drilled hole uncertainty range is computed from Table 12 by 
expanding the uncertainties in that table.  The mean length error is obtained by 
subtracting the nominal length from the actual length given in the table.  Twice the length 
uncertainty given in Table 12 was then added and subtracted from the mean length erro
to give the uncertainty range.  The tab
u
given in Table 17.  These have been computed by expanding uncertainty data given in 
Table 4. The average ratio of the drilled hole-to-hole range to the comparable model
range is 7.2 while the average for the similar ratios for the milled holes is 2.96. 
 

Center-to-Center Lower Uncertainty Mean Length Upper Uncertainty Range  

Lines Bound )( mµ  Error )( mµ  Bound )( mµ  )( mµ  

3 to 9 -114.82 0.00 114.82 229.64 

9 to 15 -75.15 -9.51 56.13 131.28 
3 to 15 -105.00 -5.12 94.76 199.76 

 Milled Hole  Expanded Uncertainty Range 

Center-to-Center Lower Uncertainty Mean Length Upper Uncertainty Range Width 

Lines Bound )( mµ  Error )( mµ  Bound )( mµ  )( mµ  

3 to 9 -37.72 0.00 37.72 75.44 

9 to 15 -49.14 82 75.96 -11.16 26.
3 to 15 -45.08 -5.40 34.28 79.36 

            Expanded  Uncertainty Estimates Based on LBB Machine Metrology 

Center-to-Center Lower Uncertainty Mean Length Upper Uncertainty Range Width 

Lines Bound )( mµ  Error )( mµ  Bound )( mµ  )( mµ  

3 to 9 -15 -2 11 26 
9 to 15 -16 -3 10 26 
3 to 15 -15 -1.8 11 26 

 
Table 17: A Comparison of the Upper and Lower Expanded Uncertainty 
Limits for the Hole-to-Hole Lengths based on the CMM Measurements and 
the Model Estimates Based on the LBB Machine Measurements. 
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The next observation relates to the ratio of the measured length uncertainties to the 
computed length uncertainties.  The  Srinivasan and Farabaugh [4] 

owed that the position errors of the test part holes fell in general within two standard 
eviations of the measured machine errors. Their work however was conducted under 

app  standard deviations. The parts in this study were not milled under 
lts of this 

stud
man measured 

con
 

 
 

exp e analytic and Monte Carlo 
t

mea onality error from the 
 this 

cas predicted the orthogonality error but did produce the same 

Not
 

 
 the 

mac  
17.9

work of Wilhelm,
sh
d
controlled laboratory conditions. In terms of expanded uncertainties this would allow for 

roximately four
controlled conditions, but under ordinary shop environment conditions. The resu

y suggest that for the machining center used the potential length errors of 
ufactured parts could fall as far away as seven standard deviations of the 

machine errors for drilled holes and three for milled holes. This conclusion can only be 
sidered tentative. 

6.3  Comparison of Orthogonality Uncertainties. 

The mean orthogonality error from Tables 5 and 6 is –4.89 arc sec and the average
anded uncertainty is 22.12 arc sec. These are based on th

me hods of estimating orthogonality from the machine tool model and LBB 
surements. From Table 14 the mean manufacturing orthog

CMM measurements is –1.06 arc sec with an expanded uncertainty of 18.1 arc sec. In
e the model estimates over-

direction of error. Similarly the model results over-predicted the expanded uncertainty. 
e that both the errors and uncertainties were both discrepant by about 4 arc sec. 

6.4  Comparison of Circularity Uncertainties 

The first circularity errors and uncertainties to be considered are those predicted by
hine model.  The mean circularity error for the inner circle feature from Table 7 is
 mµ  while the expanded uncertainty if 6.2 . For the outer circle Table 8 shows mµ

these to be 18.1 mµ  and 6.2 mµ  respectively.  The results from the CMM measured 
ts show that for the inner circle the mean circularity error is 20.99 mpar µ  and the 

expanded uncertainty is 5.49 mµ . For the outer circle the circularity error is 26.02 mµ  
and the expanded uncertainty is 12.09 mµ . From these results it appears that the values 

 the model are cfrom loser to the CMM measurements for the inner circle, at least in terms 

be h terclockwise 
of uncertainty. There is one fact that might have some relevance here although it would 

ard to determine the actual effect. The inner circle was milled in a coun
fashion, whereas the outer circle was milled in a clockwise fashion.  
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7.0  Conclusions 

 

fore
esti se only apply to the individual machine being studied, however it would 

 
dete
 

loc equate kinematic model of 
ere the 

law  in cases where there are no 
e law to 

be a
app mate the uncertainties. 

Set ent 
errors was cumbersome, but it did provide measurements for all of the components 

s in a 
reas mponent measurement. 

Alt ut a larger number of parts, the twenty-one parts that 
. 

Thi ng a procedure to estimate the uncertainties of 

sma  parts and then developing an uncertainty table 

des  by the fact that 

cha
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There are a number of conclusions that can be drawn from this study. The first and 
most is that machining uncertainties can be estimated for production machines. These 
mates of cour

be interesting to do a parallel study on a production machine in the same family and
rmine whether there are any commonalities.  

The law of Propagation of Uncertainties provides a means of estimating both point 
ation and length uncertainties when combined with an ad

the machine tool under study. There are uncertainties, such as for circularity, wh
 cannot be applied directly. These uncertainties occur

clearly understood functional relationships between quantities that would allow th
pplied. In these cases some form of simulation or Monte Carlo technique must be 
lied to esti

 
ting up and calibrating the particular LBB for measuring the machine tool compon

necessary to model the machine tool. It was possible to take all of the measurement
onably short time without changing fixtures for each co

 
hough the original plan was to c

were finally produced provided adequate data to estimate uncertainties in the machining
s makes it feasible to consider developi

a new machine tool by performing a machine tool characterization, cutting a reasonably 
ll set of reference parts, measuring the

for that machine. This table could be used by a part designer as a tool in any parts 
igned for production on that machine. This possibility is reinforced

there seem to be computable relations between uncertainties estimated from 
racterization and the actual production uncertainties.  
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APPENDIX A: Model Based Estimates of Point Error Variances and Confidence 

his append  co erta stimat ac rs f
eripheral ho e cen rs and se cted points on the inner and outer the circ
ased on the redic n formulas (31) and (32). Table A1 contains the predicted machine 
rrors using equation (13) and the error component regression models with coefficients 
om Table  Ta 2 and  contain same in tion for t er and ou
dii points th lar s ables A 5, and A ve the 95 diction int

stimates for the location of the points. 

 

Intervals 
 
T ix nt ns tables ofai  unc inty e es of the m hine tool erro or the 
p l te le  radii of ular slot 
b  p tio
e
fr 2. ble A  A3  the forma he inn ter 
ra of e circu lot. T 4, A 6 gi % pre erval 
e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
T

N
t

 

                 Ho r Error U ainty Estim or the Next  Sample                      le Cente ncert ates f Center

 Hole Machine x- Machine y- n n Hole Hole Predictio Predictio
 Nu er nter er or r ce riance mb Ce Cent Err Erro Varian Va
 m) ) ) ) or Error  x (m y(mm (µm (µm x-Err y-
   m sqr.)    (µm sqr.) (µ
 x   x  yE  

 y 
xE yE )(2

co Eu )(2
cou

1 0  5 3  3 1 10 1.1 1.6 6.86 22.60 

2 8  0 7  26 2 10 0.8 1.4 6.84 22.84 
3 3  2 6  25 4 10 0.5 1.3 6.83 23.26 
4 8  4 0  24 6 10 0.0 1.2 6.82 24.45 
5 2  2 9  23 9 10 -0.4 1.0 6.81 26.15 
6 20  6 9  22 1 10 -0.9 0.9 6.82 28.85 
7 40 4 5  21 1 10 -1.3 0.9 6.84 31.29 
8 40  6 2 9 20 1 28 -0.7 0.6 7.2 31.18 
9 40  0 5 3 19 1 43 -0.3 0.3 8.0 31.12 

10 40  1 1 9 18 1 68 0.4 -0.1 9.9 31.06 
11 40  3 5 4 17 1 92 1.0 -0.5 12.7 31.06 
12 40  7 6 3 16 1 120 1.6 -1.0 17.0 31.13 
13 40  7 3 3 15 1 140 2.0 -1.4 20.8 31.23 
14 20  3 9 6 14 1 140 2.5 -1.3 20.7 28.79 
15 2  7 9 2 13 9 140 3.1 -1.2 20.7 26.09 
16 68 0 2 7 4 12 14 3.7 -1.1 20.7 24.39 
17 3  9 1 0 11 4 140 4.2 -1.0 20.8 23.21 
18 8  3 0 6 10 2 140 4.6 -0.9 20.8 22.78 
19 0  4 5 6 9 1 140 5.0 -0.7 20.9 22.55 
20 0  7 8 3 8 1 120 4.5 -0.3 17.1 22.45 
21 0  3 3 1 7 1 92 3.8 0.1 12.8 22.37 
22 0  2 7 4 6 1 68 3.1 0.5 10.0 22.37 
23 0  2 2 6 5 1 43 2.3 1.0 8.0 22.43 
24 0  0 0 2 4 1 28 1.8 1.3 7.3 22.50 

ab s, 
e Predicted Machine Error at the Hole Centers, and the Prediction Variances for the 
ext Sample. 

le A1: This Table Contains the Nominal Locations in Part Measurement Coordinate
h
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                              Point Error Uncertainty Estimates for the Next Inner Circle Point Sample 
 Point Point Machine Machine Prediction Prediction 
 x (mm) y (mm) x-Error y-Error Variance Variance 
   (µm) (µm) x-Error y-Error 
 (µm sqr.)     (µm sqr.) 
 x y 

xE  E  )(2
xco Eu  )(2

yco Eu  

1 119.5 75 1.03 -0. 56 20 10.68 28.

2 11 3 1.25 -0.34 .48 8.82 82.7 11.54 28
3 116.82 1.48 -0.47 12.47 28.27 90.22 
4 113.54 7.25 1.73 -0.59 .93 9 13.41 27
5 109.09 03.6 1.98 -0.69 .49 1 14.32 27
6 103.6 9.09 2.23 -0.77 .98 10 15.15 26
7 97.25 3.54 2.47 -0.83 .41 11 15.86 26
8 90.22 6.82 2.70 -0.86 .83 11 16.40 25
9 82.73 8.82 2.92 -0.86 .26 11 16.74 25

10 75 19.5 3.11 -0.83 .73 1 16.87 24
11 67.27 8.82 3.26 -0.78 .24 11 16.76 24
12 59.78 6.82 3.38 -0.70 .82 11 16.43 23
13 52.75 3.54 3.46 -0.60 .47 11 15.89 23
14 46.4 9.09 3.49 -0.47 .19 10 15.19 23
15 40.91 3.6 3.47 -0.33 .98 10 14.36 22
16 36.46 .25 3.40 -0.19 .83 97 13.45 22
17 33.18 .22 3.28 -0.03 .73 90 12.51 22
18 31.18 .73 3.11 0.12 .67 82 11.59 22
19 30.5 5 2.90 0.27 .65 7 10.71 22
20 31.18 .27 2.66 0.40 .68 67 9.93 22
21 33.18 .78 2.39 0.52 .74 59 9.25 22
22 36.46 .75 2.10 0.63 .85 52 8.69 22
23 40.91 6.4 1.81 0.71 .01 4 8.24 23
24 46.4 0.91 1.52 0.77 .22 4 7.90 23
25 52.75 6.46 1.24 0.81 .51 3 7.65 23
26 59.78 3.18 1.00 0.83 .86 3 7.49 23
27 67.27 24.28 31.18 0.78 0.82 7.40 
28 75 24.77  30.5 0.61 0.79 7.37 
29 82.73 31.18 0.47 0.74 7.39 25.30 
30 90.22 33.18 0.39 0.67 7.48 25.87 
31 97.25 36.46 0.36 0.58 7.64 26.45 
32 103.6 40.91 0.37 0.48 7.88 27.01 
33 109.09 46.4 0.43 0.36 8.22 27.52 
34 113.54 52.75 0.53 0.23 8.66 27.95 
35 116.82 59.78 0.67 0.09 9.22 28.28 
36 118.82 67.27 0.83 -0.05 9.90 28.49 

 
Table A2: This Table Contains the Same Data as Table A1 for Inner Circle Points.
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   Point Error Uncertainty Estimates for the Next Outer Circle Point Sample 
 Point n Point Machine Machine Predictio Prediction 
 x )  e ance(mm y (mm) x-Error y-Error Varianc Vari  
   (µm) (µm) x-Error -Error y
   sqr.) mr sqr.)    (µm (µ
 x Eu  

y 
xE  yE  )(2

xco )(2
yco Eu  

1 130.5   .69 29.84 75 0.80 -0.22 10

2 129.66 84.64   .79 29.74 1.07 -0.40 11
3 127.15 93.98   .98 29.45 1.35 -0.56 12
4 123.06 102.75   .21 28.99 1.65 -0.71 14
5 117.52 28.39 110.67 1.96 -0.84 15.42 
6 110.67 2   .54 27.70 117.5 2.27 -0.95 16
7 102.75 6   .49 26.95 123.0 2.57 -1.02 17
8 93.98 5   .23 26.19 127.1 2.85 -1.06 18
9 84.64 6   .69 25.45 129.6 3.12 -1.07 18

10 75 5   .86 24.78 130. 3.35 -1.04 18
11 65.36 24.18 129.66 3.55 -0.97 18.71 
12 56.02 127.15   .26 23.68 3.71 -0.87 18
13 47.25 123.06   .54 23.28 3.81 -0.73 17
14 39.33 2   .59 22.97 117.5 3.85 -0.58 16
15 32.48 110.67   .48 22.75 3.83 -0.40 15
16 26.94 102.75   .27 22.60 3.75 -0.21 14
17 22.85 93.98   .04 22.51 3.60 -0.02 13
18 20.34 22.46 84.64 3.40 0.17 11.84 
19 19.5   .74 22.45 75 3.13 0.36 10
20 20.34 65.36   22.47 2.82 0.52 9.77 
21 22.85 56.02   22.53 2.48 0.67 8.96 
22 26.94 47.25   22.63 2.12 0.80 8.31 
23 32.48 39.33   22.78 1.74 0.90 7.82 
24 39.33 23.01 32.48 1.38 0.98 7.47 
25 47.25 26.94   23.32 1.03 1.02 7.24 
26 56.02 22.85   23.73 0.72 1.04 7.10 
27 65.36 20.34   24.23 0.45 1.03 7.02 
28 75    24.83 19.5 0.23 0.99 7.00 
29 84.64 20.34   25.50 0.08 0.93 7.02 
30 93.98 22.85   26.23 -0.02 0.84 7.09 
31 102.75 26.99 26.94 -0.06 0.73 7.23 
32 110.67 32.48   27.73 -0.04 0.61 7.46 
33 52 3   28.42 117. 39.3 0.04 0.46 7.80 
34 6 5   29.01 123.0 47.2 0.17 0.30 8.28 
35 5 2   29.46 127.1 56.0 0.34 0.13 8.92 
36 6 6   29.75 129.6 65.3 0.56 -0.04 9.73 

le A3: This Table Contains the Same Data as Table A1 for Outer Circle Points. 
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  ded Pred ction Intervals for Hole Cen Errors With verage Factor  Expan i ter Co 2 

 Hole Hole Hole Machine Machine Lower Limit Upper Limit Lower Limit Upper Limit 
 Numb Center x-Er y-Er x-Err x-Error y-Error -Error er Center ror ror or y
  m) y (µm) (µm) (µm) (µm) (µm) (µm) x (m  (mm) 
  x     y 

x  E y  E
1 3 1.15 1.63 -4.09 6.39 -7.88 11.13 10 10 
2 26 0.80 1.47 -4.43 6.03 -8.08 11.03 28 10 
3 25 0.52 1.36 -4.71 5.74 -8.29 11.01 43 10 
4 24 0.04 1.20 -5.19 5.26 -8.69 11.09 68 10 
5 23 -0.42 1.09 -5.64 4.80 -9.14 11.31 92 10 
6 22 -0.96 0.99 -6.18 4.26 -9.75 11.73 120 10 
7 21 40 -1.34 0.95 -6.5 3.89 -10.24 12.14  1 10 7 
8 20 40 -0.76 0.62 -6.1 4.64 -10.55 11.79  1 28 6 
9 19 40 -0.30 0.35 -5.9 5.37 -10.81 11.50  1 43 6 

10 18 40 0.4 -0.1 -5.9 6.74 -11.26 11.03  1 68 1 1 1 
11 17 40 1.0 -0.5 -6.1 8.17 -11.70 10.60  1 92 3 5 1 
12 16 40 1.6 -1.0 -6.5 9.92 -12.22 10.10  1 120 7 6 9 
13 15 40 2.0 -1.4 -7.0 11.20 -12.60 9.75  1 140 7 3 6 
14 14 2.5 -1.3 -6.5 11.64 -12.12 9.35  120 140 3 9 9 
15 13 92 3.1 -1.2 -5.9 12.27 -11.51 8.93  140 7 9 4 
16 12 68 3.7 -1.1 -5.3 12.82 -11.05 8.71 140 2 7 9 
17 11 43 4.2 -1.0 -4.8 13.41 -10.65 8.62  140 9 1 3 
18 10 28 4.6 -0.9 -4.5 13.77 -10.45 8.64  140 3 0 0 
19 9 10 5.04 -0.75 -4.11 14.20 -10.25 8.75  140 
20 8 10 4.57 -0.38 -3.71 12.85 -9.86 9.09  120 
21 7 10 3.83 0.13 -3.33 10.98 -9.33 9.59 92 
22 6 10 3.12 0.57 -3.22 9.46 -8.89 10.03 68 
23 5 10 2.32 1.02 -3.36 8.00 -8.45 10.49 43 
24 4 10 1.80 1.30 -3.61 7.21 -8.19 10.78 28 

 
Table A4: 95% P ction I les. 

 
redi ntervals for the Peripheral Ho
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  Expanded Prediction Int  With Coverage Factor 2 ervals for Inner circle Point Errors

Point Point Point Machine Machine Lower Limit Upper Limit Lower Limit Upper Limit 
Index x (mm) y (mm) x-Error y-Error x-Error x-Error y-Error y-Error 

   (µm) (µm) (µm) (µm) (µm) (µm) 
 x y 

xE  yE      

1 119.5 75 1.03 -0.20 -5.50 7.57 -10.89 10.49 

2 118.82 82.73 1.25 -0.34 -5.55 8.04 -11.01 10.34 
3 116.82 90.22 1.48 -0.47 -5.58 8.55 -11.10 10.17 
4 113.54 97.25 1.73 -0.59 -5.59 9.05 -11.16 9.98 
5 109.09 103.6 1.98 -0.69 -5.59 9.55 -11.18 9.80 
6 103.6 109.09 2.23 -0.77 -5.56 10.01 -11.16 9.62 
7 97.25 113.54 2.47 -0.83 -5.49 10.44 -11.11 9.45 
8 90.22 116.82 2.70 -0.86 -5.40 10.80 -11.02 9.31 
9 82.73 118.82 2.92 -0.86 -5.27 11.10 -10.91 9.19 

10 75 119.5 3.11 -0.83 -5.11 11.32 -10.78 9.11 
11 67.27 118.82 3.26 -0.78 -4.92 11.45 -10.63 9.07 
12 59.78 116.82 3.38 -0.70 -4.72 11.49 -10.46 9.06 
13 52.75 113.54 3.46 -0.60 -4.51 11.43 -10.29 9.09 
14 46.4 109.09 3.49 -0.47 -4.31 11.28 -10.10 9.16 
15 40.91 103.6 3.47 -0.33 -4.11 11.05 -9.92 9.25 
16 36.46 97.25 3.40 -0.19 -3.94 10.73 -9.74 9.37 
17 33.18 90.22 3.28 -0.03 -3.80 10.35 -9.57 9.50 
18 31.18 82.73 3.11 0.12 -3.70 9.92 -9.40 9.64 
19 30.5 75 2.90 0.27 -3.64 9.45 -9.25 9.79 
20 31.18 67.27 2.66 0.40 -3.64 8.96 -9.12 9.93 
21 33.18 59.78 2.39 0.52 -3.70 8.47 -9.01 10.06 
22 36.46 52.75 2.10 0.63 -3.79 7.99 -8.93 10.19 
23 40.91 46.4 1.81 0.71 -3.93 7.55 -8.88 10.30 
24 46.4 40.91 1.52 0.77 -4.10 7.14 -8.87 10.41 
25 52.75 36.46 1.24 0.81 -4.29 6.78 -8.88 10.51 
26 59.78 33.18 1.00 0.83 -4.48 6.47 -8.94 10.60 
27 67.27 31.18 0.78 0.82 -4.66 6.22 -9.03 10.68 
28 75 30.5 0.61 0.79 -4.82 6.03 -9.16 10.74 
29 82.73 31.18 0.47 0.74 -4.96 5.91 -9.32 10.80 
30 90.22 33.18 0.39 0.67 -5.08 5.86 -9.50 10.84 
31 97.25 36.46 0.36 0.58 -5.17 5.89 -9.71 10.87 
32 103.6 40.91 0.37 0.48 -5.24 5.98 -9.92 10.87 
33 109.09 46.4 0.43 0.36 -5.31 6.16 -10.14 10.85 
34 113.54 52.75 0.53 0.23 -5.36 6.41 -10.35 10.80 
35 116.82 59.78 0.67 0.09 -5.41 6.74 -10.55 10.73 
36 118.82 67.27 0.83 -0.05 -5.46 7.13 -10.73 10.62 

 
Table A 5: 95% Prediction Intervals for Inner Circle Points 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Expanded Prediction Intervals for Outer circle Point Errors With Coverage Factor 2 

 Point Point Machine Machine Lower Limit Upper Limit Lower Limit Upper Limit 
 x (mm) y (mm) x-Error y-Error x-Error x-Error y-Error y-Error 
   (µm) (µm) (µm) (µm) (µm) (µm) 
 x y     

xE  yE  

1 130.5 75 0.80 -0.22 -5.74 7.34 -11.15 10.70 

2 129.66 84.64 1.07 -0.40 -5.80 7.93 -11.30 10.51 
3 127.15 93.98 1.35 -0.56 -5.85 8.56 -11.42 10.29 
4 123.06 102.75 1.65 -0.71 -5.89 9.19 -11.48 10.05 
5 117.52 110.67 1.96 -0.84 -5.89 9.81 -11.50 9.81 
6 110.67 117.52 2.27 -0.95 -5.87 10.40 -11.47 9.58 
7 102.75 123.06 2.57 -1.02 -5.80 10.93 -11.40 9.36 
8 93.98 127.15 2.85 -1.06 -5.69 11.39 -11.30 9.17 
9 84.64 129.66 3.12 -1.07 -5.53 11.76 -11.16 9.02 

10 75 130.5 3.35 -1.04 -5.33 12.04 -10.99 8.92 
11 65.36 129.66 3.55 -0.97 -5.10 12.20 -10.80 8.87 
12 56.02 127.15 3.71 -0.87 -4.84 12.25 -10.60 8.87 
13 47.25 123.06 3.81 -0.73 -4.57 12.18 -10.38 8.92 
14 39.33 117.52 3.85 -0.58 -4.29 12.00 -10.16 9.01 
15 32.48 110.67 3.83 -0.40 -4.03 11.70 -9.94 9.14 
16 26.94 102.75 3.75 -0.21 -3.80 11.31 -9.72 9.30 
17 22.85 93.98 3.60 -0.02 -3.62 10.83 -9.51 9.47 
18 20.34 84.64 3.40 0.17 -3.49 10.28 -9.31 9.65 
19 19.5 75 3.13 0.36 -3.42 9.69 -9.12 9.83 
20 20.34 65.36 2.82 0.52 -3.43 9.08 -8.96 10.01 
21 22.85 56.02 2.48 0.67 -3.50 8.47 -8.82 10.17 
22 26.94 47.25 2.12 0.80 -3.65 7.88 -8.71 10.31 
23 32.48 39.33 1.74 0.90 -3.85 7.34 -8.64 10.45 
24 39.33 32.48 1.38 0.98 -4.09 6.84 -8.62 10.57 
25 47.25 26.94 1.03 1.02 -4.35 6.41 -8.64 10.68 
26 56.02 22.85 0.72 1.04 -4.61 6.05 -8.70 10.78 
27 65.36 20.34 0.45 1.03 -4.85 5.75 -8.82 10.87 
28 75 19.5 0.23 0.99 -5.06 5.52 -8.97 10.96 
29 84.64 20.34 0.08 0.93 -5.22 5.37 -9.17 11.03 
30 93.98 22.85 -0.02 0.84 -5.35 5.30 -9.40 11.09 
31 102.75 26.94 -0.06 0.73 -5.44 5.32 -9.66 11.12 
32 110.67 32.48 -0.04 0.61 -5.50 5.43 -9.93 11.14 
33 117.52 39.33 0.04 0.46 -5.54 5.63 -10.20 11.12 
34 123.06 47.25 0.17 0.30 -5.58 5.93 -10.47 11.07 
35 127.15 56.02 0.34 0.13 -5.63 6.32 -10.72 10.99 
36 129.66 65.36 0.56 -0.04 -5.68 6.79 -10.95 10.86 

 
Table A6: 95% Prediction Intervals for the Outer Circle Points. 
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APPENDIX B: Uncertainty Estimates for Hole Centers Based on CMM 
Measurements of Parts 

Tables B.1.and B.2. contain the uncertainty estimates for all of the drilled hole center 
errors. Tables B.3. and B.4. contain the uncertainty estimates for all milled hole center 
errors. The computations are described in Section 5.1. The results are based on pooled 
estimates over all of the manufactured parts. 
 
 
 
 

 

Ho

 
Tab
Err
 
 

 

          Summary Table  
 Drilled Hole X-Measurement Uncertainties (µm) 

              CMM Measurements (All Parts)  
 Uncertainty Expanded 
 Manufacturing Standard of a new Uncertainty 

le # Error Uncertainty Measurement of a new 
    Measurement 
3 2.73 0.14 1.06 2.12 

26 0.10 0.16 1.21 2.42 
25 -0.43 0.12 0.89 1.78 
24 -1.88 0.16 1.19 2.38 
23 -5.33 0.31 2.32 4.64 
22 -6.31 0.14 1.05 2.09 
21 -8.13 0.12 0.93 1.85 
20 -6.85 0.10 0.74 1.48 
19 -6.94 0.09 0.70 1.41 
18 -4.86 0.13 0.93 1.86 
17 -4.88 0.09 0.69 1.37 
16 -2.94 0.12 0.87 1.74 
15 -4.52 0.11 0.85 1.70 
14 -2.05 0.11 0.85 1.71 
13 1.61 0.67 4.99 9.98 
12 1.23 0.54 4.04 8.07 
11 3.02 0.15 1.11 2.22 
10 5.49 0.17 1.28 2.56 
9 4.99 0.15 1.10 2.20 
8 6.46 0.17 1.25 2.49 
7 1.30 0.14 1.04 2.08 
6 3.83 0.17 1.25 2.50 
5 3.60 0.17 1.24 2.49 
4 2.70 0.17 1.24 2.48 

le B.1: Summary of Uncertainty Estimates for Drilled Hole X-
ors. These are based on pooled estimates over all parts. 
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      Summary Table  
 Drilled Hole Y-Measurement Uncertainties (µm) 
             CMM Measurements (All Parts)  

   Uncertainty Expanded 
 Manufacturing Standard of a new Uncertainty 

Hole # Error Uncertainty Measurement of a new 
    Measurement 

3 8.05 0.12 0.87 1.74 
26 6.32 0.12 0.87 1.74 
25 9.14 0.13 0.94 1.87 
24 9.33 0.11 0.81 1.62 
23 12.29 0.39 2.90 5.80 
22 5.90 0.16 1.17 2.34 
21 6.10 0.13 0.98 1.96 
20 0.99 0.09 0.64 1.28 
19 -2.05 0.10 0.71 1.41 
18 -5.61 0.12 0.92 1.85 
17 -9.61 0.10 0.74 1.48 
16 -13.97 0.13 0.96 1.92 
15 -16.45 0.13 1.00 2.00 
14 -14.26 0.13 0.95 1.91 
13 -13.09 1.18 8.74 17.49 
12 -12.01 0.93 6.91 13.82 
11 -11.51 0.16 1.19 2.39 
10 -9.56 0.15 1.13 2.25 
9 -13.58 0.11 0.83 1.66 
8 -8.68 0.15 1.10 2.21 
7 -4.57 0.14 1.03 2.05 
6 -0.63 0.14 1.00 2.00 
5 2.45 0.13 0.93 1.87 
4 2.86 0.13 1.00 1.99 

 
Table B.2: Summary of Uncertainty Estimates for Drilled Hole 
Y-Errors. These are based on pooled estimates over all parts. 
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  Summary Table  
 Milled Hole X-Measurement Uncertainties (µm) 

       CMM Measurements (All Parts)  
 Uncertainty Expanded 
 Manufacturing Standard of a new Uncertainty 

le # Error Uncertainty Measurement of a new 
    Measurement 

3 11.23 0.16 1.19 2.38 
26 9.79 0.18 1.33 2.66 
25 7.63 0.14 1.07 2.13 
24 5.62 0.21 1.56 3.12 
23 2.99 0.14 1.03 2.06 
22 0.72 0.12 0.92 1.85 
21 -1.38 0.14 1.05 2.10 
20 -1.52 0.14 1.02 2.05 
19 -1.66 0.13 0.94 1.88 
18 -2.36 0.15 1.11 2.23 
17 -0.12 0.13 0.98 1.96 
16 2.43 0.16 1.17 2.33 
15 3.62 0.19 1.40 2.80 
14 6.10 0.14 1.03 2.07 
13 8.22 0.16 1.18 2.35 
12 10.50 0.15 1.09 2.19 
11 12.37 0.54 4.00 7.99 
10 13.69 0.16 1.22 2.44 
9 14.79 0.12 0.92 1.84 
8 14.90 0.14 1.02 2.04 
7 15.28 0.18 1.31 2.63 
6 15.91 0.18 1.33 2.67 
5 14.04 0.15 1.14 2.28 
4 12.84 0.21 1.59 3.18 

le B.3: Summary of Uncertainty Estimates for Milled Hole 
rrors. These are based on pooled estimates over all parts. 
65



 
 

 
 

Hole # 
 

3 
26 
25 
24 
23 
22 
21 
20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 

 
Table B
Y-Error

 

 

 Summary Table  
 Milled Hole Y-Uncertainties in µm  
       CMM Measurements (All Parts)  

  Uncertainty Expanded 
Manufacturing Standard of a new Uncertainty 

Error Uncertainty Measurement of a new 
   Measurement 

11.15 0.07 0.55 1.10 
11.08 0.07 0.54 1.09 
10.45 0.07 0.49 0.98 
9.70 0.14 1.05 2.09 
9.87 0.29 2.12 4.24 
8.68 0.12 0.91 1.82 
7.90 0.10 0.74 1.48 
6.45 0.08 0.56 1.12 
6.25 0.09 0.68 1.37 
7.03 0.08 0.59 1.18 
7.44 0.06 0.46 0.92 
6.67 0.07 0.54 1.08 
4.67 0.08 0.58 1.16 
5.88 0.16 1.21 2.42 
8.45 1.45 10.74 21.48 
8.08 0.08 0.61 1.21 
8.71 0.07 0.52 1.04 
8.72 0.12 0.87 1.73 
9.57 0.06 0.43 0.87 
11.13 0.07 0.52 1.05 
12.01 0.10 0.78 1.55 
11.23 0.11 0.81 1.62 
9.56 0.09 0.65 1.29 
9.20 0.08 0.59 1.18 

.4: Summary of Uncertainty Estimates for Milled Hole 
s. These are based on pooled estimates over all parts. 
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The next four tables are analysis of manufacturing variance tables for all of the drilled 
nd milled holes. 

 
 
 

a
 

                       Analysis of Variance Summary  
                            Drilled Hole, X-Error  

 Manufacturing Metrology  Future Expanded 
Hole # Error Error F Statistic Manufacturing Future 

 Variance Variance  Uncertainty Manufacturing 
 (µm sqr.) (µm sqr.)  (µm) Uncertainty 
     (µm) 
3 640.89 1.10 581.09 25.91 51.82 
26 777.13 1.44 540.77 28.53 57.07 
25 702.47 0.78 904.63 27.13 54.26 
24 692.02 1.39 498.33 26.93 53.85 
23 1279.90 5.28 242.25 36.62 73.24 
22 706.44 1.08 656.09 27.20 54.41 
21 626.32 0.84 742.98 25.62 51.23 
20 661.73 0.54 1225.84 26.33 52.66 
19 640.13 0.49 1314.85 25.90 51.79 
18 673.04 0.85 792.55 26.55 53.11 
17 576.07 0.46 1250.15 24.57 49.13 
16 597.47 0.74 805.18 25.02 50.04 
15 566.00 0.71 797.18 24.35 48.70 
14 574.13 0.71 804.51 24.52 49.05 
13 622.42 24.46 25.44 25.54 51.07 
12 563.77 15.99 35.26 24.30 48.61 
11 606.99 1.21 500.87 25.22 50.43 
10 634.77 1.61 393.10 25.79 51.57 
9 511.44 1.19 430.00 23.15 46.29 
8 638.22 1.53 417.98 25.86 51.72 
7 736.93 1.06 696.80 27.79 55.57 
6 624.16 1.54 406.18 25.57 51.14 
5 613.85 1.52 404.15 25.36 50.72 
4 716.56 1.51 473.73 27.40 54.80 

 
Table B.5.: Summary Analysis of Variances for X-Errors for all Peripheral Drilled Holes 
along with Manufacturing Uncertainties. 
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                       Analysis of Variance Summary  
                            Drilled Hole, Y-Error  

 Manufacturing Metrology  Future Expanded 
Hole # Error Error F Statistic Manufacturing Future 

 Variance Variance  Uncertainty Manufacturing
 (µm sqr.) (µm sqr.)  (µm) Uncertainty 
     (µm) 

3 1371.01 0.74 1844.87 37.90 75.80 
26 1376.53 0.75 1846.50 37.97 75.95 
25 1299.86 0.86 1507.01 36.90 73.80 
24 1585.27 0.64 2464.64 40.75 81.50 
23 2489.11 8.26 301.28 51.07 102.13 
22 1456.46 1.34 1084.26 39.06 78.12 
21 1583.96 0.94 1682.07 40.74 81.47 
20 1388.55 0.40 3461.30 38.14 76.28 
19 1399.56 0.49 2863.77 38.29 76.58 
18 1959.60 0.84 2338.42 45.31 90.62 
17 1691.96 0.53 3167.08 42.10 84.20 
16 1983.36 0.91 2186.34 45.58 91.17 
15 2410.27 0.98 2455.54 50.25 100.50 
14 1950.38 0.89 2186.49 45.20 90.40 
13 1985.83 75.08 26.45 45.61 91.22 
12 1819.30 46.86 38.82 43.66 87.31 
11 1576.95 1.40 1127.49 40.65 81.29 
10 1695.11 1.25 1359.27 42.14 84.28 
9 1924.78 0.68 2840.90 44.90 89.81 
8 1765.56 1.19 1477.68 43.01 86.01 
7 1445.01 1.03 1397.68 38.91 77.82 
6 1429.39 0.99 1449.70 38.70 77.39 
5 1310.32 0.86 1530.73 37.05 74.10 
4 1539.39 0.98 1578.21 40.16 80.32 

 
Table B.6.: Summary Analysis of Variances for Y-Errors for all Peripheral Drilled 
Holes along with Manufacturing Uncertainties. 
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                       Analysis of Variance Summary  
                            Milled Hole, X-Error  

 Manufacturing Metrology  Future Expanded 
Hole # Error Error F Statistic Manufacturing Future 

 Variance Variance  Uncertainty Manufacturing
 (µm sqr.) (µm sqr.)  (µm) Uncertainty 
     (µm) 
3 86.92 1.39 62.72 9.54 19.08 
26 102.83 1.74 59.15 10.38 20.76 
25 110.68 1.12 99.11 10.77 21.54 
24 132.55 2.39 55.52 11.78 23.57 
23 142.90 1.04 137.71 12.24 24.47 
22 179.14 0.84 213.70 13.70 27.40 
21 186.62 1.08 172.20 13.98 27.97 
20 166.98 1.03 162.65 13.23 26.45 
19 191.99 0.87 220.33 14.18 28.36 
18 168.87 1.22 138.57 13.30 26.60 
17 196.49 0.95 207.73 14.35 28.69 
16 189.82 1.34 141.98 14.10 28.20 
15 202.31 1.92 105.31 14.56 29.12 
14 176.59 1.05 168.53 13.60 27.20 
13 189.78 1.36 139.68 14.10 28.20 
12 171.24 1.17 145.87 13.39 26.79 
11 211.42 15.68 13.48 14.88 29.76 
10 172.01 1.46 117.85 13.42 26.85 
9 158.37 0.83 189.96 12.88 25.76 
8 166.44 1.02 163.41 13.20 26.41 
7 136.10 1.70 80.22 11.94 23.88 
6 109.39 1.75 62.60 10.71 21.41 
5 102.46 1.27 80.62 10.36 20.72 
4 118.15 2.48 47.70 11.13 22.25 

 
Table B.7.: Summary Analysis of Variances for X-Errors for all Peripheral Milled 
Holes along with Manufacturing Uncertainties. 
 
 



 
 
 
 
 
 
 
 
 
 
 

                       Analysis of Variance Summary  
                            Milled Hole, Y-Error  

 Manufacturing Metrology  Future Expanded 
Hole # Error Error F Statistic Manufacturing Future 

 Variance Variance  Uncertainty Manufacturing 
 (µm sqr.) (µm sqr.)  (µm) Uncertainty 
     (µm) 
3 80.80 0.30 270.04 9.20 18.40 
26 78.77 0.29 270.10 9.08 18.17 
25 91.95 0.24 387.66 9.81 19.63 
24 104.62 1.07 97.51 10.47 20.94 
23 125.93 4.42 28.50 11.49 22.97 
22 114.74 0.82 140.68 10.96 21.93 
21 128.85 0.54 239.85 11.62 23.24 
20 168.60 0.31 550.40 13.29 26.58 
19 183.26 0.46 400.33 13.86 27.71 
18 167.01 0.34 490.36 13.23 26.45 
17 211.27 0.21 1020.07 14.88 29.75 
16 288.84 0.29 1010.57 17.40 34.79 
15 417.45 0.33 1269.35 20.91 41.82 
14 371.76 1.43 259.19 19.73 39.47 
13 427.54 113.29 3.77 21.16 42.33 
12 262.69 0.36 726.60 16.59 33.18 
11 255.97 0.27 960.45 16.38 32.75 
10 270.35 0.74 367.71 16.83 33.66 
9 274.91 0.19 1483.63 16.97 33.94 
8 224.23 0.27 833.03 15.33 30.65 
7 157.35 0.59 266.11 12.84 25.68 
6 106.69 0.64 166.11 10.57 21.14 
5 99.46 0.41 242.57 10.21 20.42 
4 108.00 0.34 316.19 10.64 21.27 

 
Table B.8.: Summary Analysis of Variances for Y-Errors for all Peripheral Milled Holes 
along with Manufacturing Uncertainties. 
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APPENDIX C: Analysis of Variance for Selected Hole Centers 

his appendix contains the analysis of variance tables for the CMM measurements of the 
enters of the three drilled and milled holes number 3, 9 and 15. 

 
 

 
T
c

Part 
# 

1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
27 
21 

 

 

             Analysis of Variance Table  
                Drilled Hole # 3  

    
 X-Measurement Replications Mean Degrees-of- Standard 
           ( µm)  Freedom Deviation 

   (Manufacturing   (Metrology 
   Error, µm)  Uncertainty, 

µm) 
8.388 6.124 4.94 5.996 6.177 6.325 4 1.25925 

-3.861 -3.593 -3.191 -1.589 -3.945 -3.236 4 0.966609 
21.613 22.459 19.837 20.361 21.42 21.138 4 1.042298 
5.404 4.218 5.734 4.302 4.889 4.91 4 0.665768 
0.88 2.705    1.792 1 1.29003 

-0.417 -0.191    -0.304 1 0.159821 
-11.848 -12.696    -12.272 1 0.599499 
-21.173 -21.07    -21.122 1 0.072832 
-8.784 -11.428    -10.106 1 1.869298 
-6.097 -4.546    -5.322 1 1.096493 
5.164 2.433    3.798 1 1.931337 

17.726 18.735    18.23 1 0.713464 
-51.234 -52.277    -51.755 1 0.73706 
6.463 6.073    6.268 1 0.275809 
2.642 1.146    1.894 1 1.05738 
-0.773 1.325    0.276 1 1.483569 
-2.42 -1.887    -2.154 1 0.376961 
8.539 10.633    9.586 1 1.480194 

29.596 29.434    29.515 1 0.114643 
17.431 19.826    18.629 1 1.693294 
13.722 14.055    13.889 1 0.235346 

    
 Mean Manufacturing Error (Grand Mean) = 2.729 µm 
 Variance of the Manufacturing Error (Variance of the Means) = 640.886701 µm sqr. 
 Variance of the Metrology Uncertainty (Variance of the Standard Deviations) = 1.102909 
    µm sqr. 
 F Statistic = 581.0877  

Table C1: Analysis of Variance Table for X-Measurements of Drilled Hole # 3 
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   Analysis of Variance Table  
          Drilled Hole # 3  

    
Part  Y-Measurement Replications Mean Degrees-of- Standard 

#           (µm)  Freedom Deviation 
   (Manufacturing (Metrology 
   Error, µm) Uncertainty, µm)

1 -0.941 -3.353 -2.301 -2.669 -0.876 -2.028 4 1.089608 

2 -9.501 -10.194 -11.457 -9.764 -9.837 -10.151 4 0.771403 
3 37.701 38.017 36.3 36.283 37.251 37.11 4 0.795814 
4 2.655 2.774 1.986 2.177 2.482 2.415 4 0.328698 
5 -9.683 -11.212    -10.448 1 1.081658 
6 21.033 19.897    20.465 1 0.803153 
7 -2.003 -1.093    -1.548 1 0.643329 
8 8.962 7.121    8.041 1 1.301495 
9 -3.531 -2.63    -3.081 1 0.63726 

10 -7.676 -8.471    -8.074 1 0.562407 
11 4.149 2.168    3.159 1 1.401298 
12 15.865 16.32    16.093 1 0.321663 
13 -39.299 -36.961    -38.13 1 1.653506 
14 1.155 2.139    1.647 1 0.695928 
15 -1.648 -2.092    -1.87 1 0.314247 
16 -3.873 -3.423    -3.648 1 0.318293 
17 4.239 6.168    5.204 1 1.364209 
18 3.655 3.67    3.663 1 0.010115 
19 43.345 42.935    43.14 1 0.289299 
27 48.849 50.143    49.496 1 0.915088 
21 65.651 63.91    64.78 1 1.231363 

    
 Mean Manufacturing Error (Grand Mean) = 2.696 µm 
 Variance of the Manufacturing Error (Variance of the Means) = 1371.01391 µm sqr. 
 Variance of the Metrology Uncertainty (Variance of the Standard Deviations) = 0.74315
    µm sqr. 
 F Statistic = 1844.868  

 
Table C2: Analysis of Variance Table for Y-Measurements of Drilled Hole #3 
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      Analysis of Variance Table  
             Milled Hole # 3  

    
Part                                      X-Measurement Replications Mean Degrees-of- Standard 

#                                              (µm)  Freedom Deviation 
   (Manufacturing (Metrology 
   Error, µm) Uncertainty, µm)

1 10.925 12.514 14.288 14.256 11.326 12.662 4 1.581885 

2 13.556 12.913 11.694 12.823 11.41 12.479 4 0.89792 
3 11.841 14.149 15.154 14.161 14.668 13.994 4 1.273478 
4 10.459 9.008 8.763 7.597 8.788 8.923 4 1.020844 
5 15.985 15.51    15.747 1 0.335826 
6 11.404 12.2    11.802 1 0.563083 
7 5.749 5.278    5.513 1 0.333129 
8 -14.611 -14.951    -14.781 1 0.24007 
9 11.294 10.412    10.853 1 0.623767 

10 10.541 10.89    10.715 1 0.246816 
11 11.078 13.796    12.437 1 1.921895 
12 8.509 12.653    10.581 1 2.930723 
13 20.172 18.027    19.1 1 1.51661 
14 13.281 13.848    13.565 1 0.401234 
15 14.088 12.43    13.259 1 1.172022 
16 10.036 11.259    10.648 1 0.864516 
17 12.031 14.395    13.213 1 1.671714 
18 10.742 10.573    10.658 1 0.11936 
19 15.688 14.681    15.184 1 0.712113 
27 13.666 12.669    13.167 1 0.705367 
21 11.56 11.072    11.316 1 0.345266 

         
 Mean Manufacturing Error (Grand Mean) = 11.227 µm 
 Variance of the Manufacturing Error (Variance of the Means) = 86.919903 µmsqr. 
 Variance of the Metrology Uncertainty (Variance of the Standard Deviation) = 1.385941
    µmsqr. 
 F Statistic = 62.71543  

 
Table C3: Analysis of Variance Table for X-Measurements of Milled Hole #3 
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            Analysis of Variance Table  
                 Milled Hole # 3  

    
Part              Y-Measurement Replications Mean Degrees-of- Standard 

#                      (µm)  Freedom Deviation 
   (Manufacturing  (Metrology 
   Error, µm)  Uncertainty, µm) 

1 10.974 11.803 11.292 12.208 11.489 11.553 4 0.473984 

2 10.464 10.304 11.124 10.35 9.867 10.422 4 0.453149 
3 11.358 10.515 10.819 11.335 11.759 11.157 4 0.489981 
4 11.982 11.381 11.349 11.707 11.567 11.597 4 0.259562 
5 6.149 6.483    6.316 1 0.236022 
6 11.189 11.07    11.129 1 0.083622 
7 11.958 11.473    11.715 1 0.343244 
8 -13.513 -12.861    -13.187 1 0.460581 
9 12.036 11.498    11.767 1 0.381003 

10 13.702 14.645    14.174 1 0.666257 
11 16.416 15.868    16.142 1 0.387077 
12 12.733 12.709    12.721 1 0.017536 
13 18.048 19.018    18.533 1 0.685809 
14 14.497 14.514    14.505 1 0.012141 
15 12.851 11.301    12.076 1 1.095818 
16 11.425 12.569    11.997 1 0.80922 
17 10.257 12.566    11.411 1 1.632596 
18 12.564 11.773    12.168 1 0.559039 
19 11.751 12.123    11.937 1 0.263001 
27 11.97 12.856    12.413 1 0.626468 
21 13.651 13.42    13.535 1 0.163193 

         
 Mean Manufacturing Error (Grand Mean) = 12.838 µm  
 Variance of the Manufacturing Error (Variance of the Means) = 80.800102 µm sqr. 
 Variance of the Metrology (Variance of the Means) =  0.299211 
    µm sqr. 
 F Statistic = 270.0435  

 
Table C4: Analysis of Variance Table for Y-Measurements of Milled Hole #3. 
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  Analysis of Variance Table  
          Drilled Hole # 9  

   
Part X-Measurement Replications Mean Degrees-of- Standard  

#          (µm)  Freedom Deviation 
  (Manufacturing (Metrology 
  Errors, µm) Uncertainty, µm)

1 7.837 7.521 7.277 8.075 6.667 7.475 4 0.544309 

2 4.903 5.352 5.411 4.946 6.571 5.437 4 0.674551 
3 21.018 20.875 19.423 22.19 22.438 21.189 4 1.205255 
4 3.952 2.542 3.057 1.662 3.372 2.917 4 0.867943 
5 7.962 9.512    8.737 1 1.095818 
6 4.37 5.79    5.08 1 1.004106 
7 3.724 3.736    3.73 1 0.008092 
8 -13.96 -14.961    -14.461 1 0.708068 
9 3.099 1.667    2.383 1 1.012873 

10 -2.782 -3.345    -3.064 1 0.398541 
11 2.476 3.744    3.11 1 0.896884 
12 -16.38 -15.505    -15.943 1 0.619051 
13 -43.098 -41.484    -42.291 1 1.141673 
14 4.272 2.942    3.607 1 0.940718 
15 7.968 8.286    8.127 1 0.224558 
16 3.741 -0.134    1.803 1 2.740556 
17 10.651 5.971    8.311 1 3.30903 
18 0.651 -0.635    0.008 1 0.909698 
19 29.827 30.695    30.261 1 0.613656 
27 27.004 26.467    26.736 1 0.37966 
21 15.547 16.31    15.928 1 0.53948 

         
 Mean Manufacturing Error (Grand Mean) = 4.985 µm 
 Variance of the Manufacturing Error (Variance of the Means) = 511.44179 µm sqr. 
 Variance of the Metrology Uncertainty (Variance of the Standard Deviations) = 1.189403 
   µm sqr. 
 F Statistic = 429.9987  

 
Table C5: Analysis of Variance Table for X-Measurements of Drilled Hole #9 
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   Analysis of Variance Table   
          Drilled Hole # 9 

     
Part  Y-Measurement Replications Mean Degrees-of- Standard 

#           (µm)  Freedom Deviation 
 (Manufacturing (M   etrology 

    UnceError, µm) rtainty, µm)

1 -22.324 -21.057 -21.072 -19.226 -20.386 -20.813 4 1.130235 

2 7 7 69 6  -30.789 4 0.673669 -31.5 -30.16 -30.8 -31.29 -30.045
3 4 1 5 9 4 0.817194 11.15 10.97 12.37 10.55 10.239 11.06 
4 6 3 34 8  -17.819 4 0.901909 -16.26 -18.17 -18.2 -17.86 -18.555
5 5 4 -25.169 1 0.658168 -25.63 -24.70    
6 9 4   -12.032 1 0.010783 -12.03 -12.02  
7 7 7   1 0.820011 -14.55 -15.71  -15.137 
8 5 7   -20.844 1 1.122115 -20.0 -21.63  
9 2    1 0.388426 -8.07 -8.621  -8.347 

10 4 4   -22.339 1 0.388428 -22.61 -22.06  
11 9 3   -20.004 1 0.388428 -20.27 -19.7  
12 4 1   -27.557 1 0.107897 -27.63 -27.48  
13 6 2   1 0.873956 -60.48 -61.72  -61.104 
14 5 4   1 0.345266 -14.46 -14.95  -14.709 
15 2 7   1 1.650811 -22.20 -19.86  -21.034 
16 8 6   1 0.55027 -20.50 -21.28  -20.897 
17 9 3   -23.346 1 1.532124 -24.42 -22.26  
18 2 2   -24.757 1 0.204997 -24.61 -24.90  
19 6 6   24.086 1 0.226585 23.92 24.24  
27 5 5   27.145 1 0.410002 26.85 27.43  
21 2 8   1 0.399218 45.53 44.96  45.25 

     
 Mean Manufacturing Errp Grand Mean) = 2.696 µm  r (
 Variance of the Manufacturing Error (Variance of the Means) 1924.78242 µm sqr.  = 
 Variance of the Metrology Uncertainty (Variance of the Standard Deviations) = 0.677527
     µm sqr. 
 F Statistic =  2840.895   

 
Table C6: Analysis of Variance Table for Y-Measurements of Drilled Hole #9. 
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   Analysis of Variance Table  
  9          Milled Hole #

    
Part  X-Measurement Replications Mean Degrees-of- Standard 

#            (µm)  Freedom Deviation 
   (Manufacturing  (Metrology 
   Error, µm) Uncertainty, µm) 

1 16.844 17.036 15.541 14.392 17.315 16.226 4 1.230574 

2 12.421 11.37 11.843 10.819 11.881 11.667 4 0.60236 
3 13.545 13.164 14.556 12.291 12.893 13.29 4 0.842547 
4 16.253 14.369 17.07 17.63 17.078 16.48 4 1.278243 
5 20.363 21.506    20.935 1 0.808548 
6 20.476 19.172    19.824 1 0.922513 
7 5.013 6.687    5.85 1 1.184158 
8 -9.427 -10.124    -9.776 1 0.492952 
9 16.628 17.302    16.965 1 0.476088 

10 9.825 9.42    9.623 1 0.285924 
11 13.21 15.644    14.427 1 1.720935 
12 -1.594 -0.473    -1.033 1 0.792361 
13 25.29 26.453    25.871 1 0.822705 
14 23.735 23.692    23.714 1 0.030349 
15 21.171 22.602    21.886 1 1.012195 
16 6.42 6.26    6.34 1 0.113291 
17 19.974 19.786    19.88 1 0.132844 
18 17.862 16.369    17.116 1 1.056029 
19 25.863 25.488    25.675 1 0.265017 
27 20.897 19.802    20.349 1 0.774155 
21 17.456 17.815    17.635 1 0.253561 

         
 Mean Manufacturing Error (Grand Mean) 14.794 µm 
 Variance of the Manufacturing Error (Variance of the Means) = 158.373624 µm sqr. 
 Variance of the Metrology Uncertainty (Variance of the Standard Deviations) = 0.833741
    µm sqr. 
 F Statistic = 189.9553  

 
Table C7: Analysis of Variance Table for X-Measurements of Milled Hole #9. 
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Part  
# 

1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
27 
21 

 

 

   Analysis of Variance Table  
          Milled Hole # 9  

    
 Y-Measurement Replications Mean Degrees-of- Standard 
           (Micrometers)  Freedom Deviation 

   (manufacturing  (Metrology 
   Error) Uncertainty) 

7.141 6.897 7.538 7.477 7.736 7.358 4 0.335069 

10.406 10.59 10.773 10.62 10.559 10.59 4 0.131265 
5.493 5.768 4.791 5.249 5.005 5.261 4 0.386382 
5.997 5.905 6.027 6.058 5.783 5.954 4 0.111295 
3.815 5.219    4.517 1 0.992643 

31.799 31.219    31.509 1 0.410009 
6.012 5.325    5.669 1 0.485532 
-17.7 -18.738    -18.219 1 0.733687 
8.392 8.667    8.53 1 0.194213 

10.101 9.567    9.834 1 0.377637 
10.559 10.681    10.62 1 0.086317 
20.325 20.081    20.203 1 0.172633 
17.807 17.67    17.738 1 0.097107 
10.452 9.583    10.017 1 0.615006 
11.505 10.101    10.803 1 0.992644 
6.744 6.561    6.653 1 0.129475 
7.355 8.057    7.706 1 0.496322 
3.754 3.937    3.845 1 0.129475 
6.668 7.523    7.095 1 0.604217 
9.964 10.91    10.437 1 0.668952 
38.91 38.086    38.498 1 0.582635 

    
 Mean Manufacturing Error (Grand Mean) = 12.838 micrometers 
 Variance of the Manufacturing Error (Variance of the Means) = 274.906987 micrometer sqr. 
 Variance of the Metrology Uncertainty (Variance of the Standard Deviations) = 0.185294
    micrometer sqr. 
 F Statistic = 1483.63  

Table C8: Analysis of Variance Table for Y-Measurements of Milled Hole #9. 
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 ariance Table   Analysis of V  
 ole # 15         Drilled H  

    
Part  X-Measurement Replications an Degrees- d Me of- Standar

# icrom  edom ion           (M eters) Fre Deviat
   (Manufacturing y (Metrolog

   ) nty) Error Uncertai

1 54 41 7 36 33 67 4 77 -6.4 -5.3 -6.4 -6.8 -7.2 -6.4 0.7055

2 902 15 22 4 49 -11. -12.1 -11.948 -12.573 -12.07 -12.1 0.2670
3 91 44 4.542 4.221 14.74 87 4 58 14.1 15.2 1 1 14.5 0.4322
4 79 26 3.448 1.862 1.556 34 4 76 -3.4 -3.3 - - - -2.7 0.9439
5 6 82    4 1 34 2.10 3.0 2.59 0.6905
6 98 58    77 1 61 -3.9 0.4 -1. 3.1505
7 1 49    8 1 59 -5.3 -5.2 -5.2 0.0431
8 523 455    989 1 68 -20. -19. -19. 0.7552
9 89 67    28 1 17 -2.2 -2.1 -2.2 0.0863

10 .19 .945    068 1 4 -16 -15 -16. 0.1726
11 33 22    26 1 55 -3.4 -3. -3.3 0.1510
12 05 46    26 1 56 -12.4 -13.0 -12.7 0.4531
13 016 .862    939 1 45 -54. -55 -54. 1.3055
14 13 13    13 1 72 -7.8 -9.6 -8.7 1.2731
15 .727 44    185 1 62 -10 -9.6 -10. 0.7660
16 27 15    21 1 19 -9.8 -9.4 -9.6 0.2913
17 99 11    55 1 05 -6.6 -8.0 -7.3 0.9279
18 14 45    8 1 07 -2.9 -2.0 -2.4 0.6150
19 19.82 20.325    20.073 1 0.356057 1 
27   83 1 0.151059 23.59 23.376  23.4
21  3.288 2.96 3.616   1 0.463953 

    
 Mean Manufacturing Error (Grand Mean) = -4.521 micrometers 
 Variance of the Manufactu Variance of the Means) = 565.99933 micrometer sqr. ring Error (
 Variance of the Metrology Error (Variance of the Standard Deviations) = 0.710005
    micrometer sqr. 
 F Statistic = 797.1762  

 
Table C9: Analysis of Variance Table for X-Measurements of Drilled Hole #15. 
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   Analysis of Variance Table   
          Drilled Hole # 15   

     
Part  Y-Measurement Replications Mean Degrees-of- Standard 

#            (Micrometers)  Freedom Deviation 
   (Manufacturing  (Metrology 

   Error)  Uncertainty) 

1 -30.075 -29.633 -28.046 -27.893 -28.793 -28.888 4 0.958113 

2 -29.053 -29.404 -29.099 -29.022 -29.221 -29.16 4 0.155985 
3 25.436 25.787 21.469 26.031 24.796 24.704 4 1.867158 
4 -31.54 -31.403 -31.769 -31.174 -31.418 -31.461 4 0.217243 
5 -29.968 -29.343    -29.655 1 0.442373 
6 -20.737 -21.133    -20.935 1 0.28053 
7 -25.879 -25.055    -25.467 1 0.582642 
8 -19.318 -19.867    -19.592 1 0.388421 
9 -27.069 -27.847    -27.458 1 0.55027 

10 -25.62 -25.803    -25.711 1 0.129471 
11 -23.239 -23.651    -23.445 1 0.291314 
12 -6.256 -7.462    -6.859 1 0.852378 
13 -63.965 -61.783    -62.874 1 1.542907 
14 -18.021 -18.478    -18.25 1 0.323685 
15 -20.981 -22.766    -21.873 1 1.262384 
16 -22.064 -21.805    -21.935 1 0.183423 
17 -28.229 -28.076    -28.152 1 0.107897 
18 -30.289 -26.321    -28.305 1 2.805298 
19 22.583 23.163    22.873 1 0.410002 
27 31.479 32.15    31.815 1 0.474744 
21 23.407 24.048    23.727 1 0.453164 

     
 Mean Manufacturing Error (Grand Mean) = 2.696 micrometers  
 Variance of the Manufacturing Error (Variance of the Means) = 2410.274 micrometer sqr. 
 Variance of the Metrology Uncertainty (Variance of the Standard Deviations) = 0.981564 
     micrometer sqr. 
 F Statistic = 2455.544   

 
Table C10: Analysis of Variance Table for Y-Measurements of Drilled Hole #15. 
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   Analysis of Variance Table  
          Milled Hole # 15 

    
Part f- Standard   X-Measurement Replications Mean Degrees-o

# Deviation           (Micrometers)  Freedom 
 y   (Manufacturing  (Metrolog

   Error)  Uncertainty) 

1 6.775 7.523 8.041 8.575 7.568 4 0.75504 6.927 

2 -3.799 -4.959 -3.51 -2.777 8 -3.461 4 1.033854 -2.25
3 5.737 6.497 4 0.976229 5.371 7.416 7.553 6.409 
4 13.245 12.405 12.082 4 1.392083 11.719 9.857 13.184 
5 12.36 10.254    11.307 1 1.488962 
6 7.477 10.925    9.201 1 8446 2.43
7 -0.534 -1.404    -0.969 1 0.615007 
8 -31.204 -27.39    -29.297 1 2.697393 
9 6.104 5.188    5.646 1 0.647376 

10 -2.747 -3.357    -3.052 1 0.431584 
11 6.485    5.821 1 0.938694 5.157 
12 -8.911 -7.706    -8.308 1 0.852378 
13 5.188 6.5    1 0.927905 5.844 
14 9.964 9.521    43 1 0.312898 9.7
15 13.519 15.442    14.481 1 1.359483 
16 0.26974 0.198 0.58    0.389 1 
17 4.704263 8.362 1.709    5.035 1 
18 2.35 2.426    2.388 1 0.053947 
19 9.628 8.759    9.193 1 0.615007 
27 8.118 6.287    7.202 1 1.294751 
21 -3.769 -3.174    -3.471 1 0.420794 

    
 Mean Manufacturing Error (Grand Mean) = 3.625 micrometers  
 Variance of the Manufacturing Error (Variance of the Means) = 202.311028 micrometer sqr. 
 Variance of the Metrology Uncertainty (Variance of the Standard Deviations) = 1.921037 
    micrometer sqr. 
 F Statistic = 105.3134  

 
Table C11: Analysis of Variance Table for X-Measurements of Milled Hole #15. 
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   Analysis of Variance Table   
         Milled Hole # 15   

     
Part  Y-Measurement Replications Mean Degrees-of- Standard 

#           (Micrometers)  Freedom Deviation 
 (Manufacturing  (Metrology   

   Error)  Uncertainty) 

1 3.418 3.784 3.271 4 0.451696 2.579 3.448 3.128 

2 3.555 3.448 3.525 4 0.161484 3.296 3.601 3.723 
3 448 3.845 3.784 3.668 4 0.265521 3.326 3.937 3.
4 4 0.417099 2.319 2.197 2.06 1.74 1.282 1.92 
5    0.473 1 0.453163 0.153 0.793 
6 21.576    22.064 1 0.690532 22.552 
7 -0.702    0.29 1 1.402647 1.282 
8 -24.048    -24.338 1 0.410009 -24.628 
9 -0.153    0.412 1 0.79843 0.977 

10   3.723 1 0.345267 3.967 3.479  
11  3.334 1 0.917115 3.983 2.686   
12  22.141 1 0.107897 22.064 22.217   
13   12.764 1 1.758702 11.52 14.008  
14    5.608 1 0.183423 5.478 5.737 
15    2.457 1 0.53948 2.838 2.075 
16 -0.854 1 0.086317 -0.793 -0.916    
17   -1.114 1 0.539479 -1.495 -0.732  
18 2.586 1 0.226582 2.426 2.747    
19 7.523    7.042 1 0.679745 6.561 
27 1 0.226582 7.904 7.584    7.744 
21    30.777 1 0.496318 31.128 30.426 

     
 Mean Manufacturing Error (Grand Mean) = 12.838 micrometers  
 Variance of the Manufacturing Error (Variance of the Means) = 417.453169 micrometer sqr. 
 Variance of the Metrology Uncertainty (Variance of the Standard Deviations) = 0.328871 
     micrometer sqr. 
 F Statistic = 1269.352   

 
sis of Variance Table for Y-Measurements of Milled Hole #15. 

 
 

Table C12: Analy
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APPENDIX D: Derivation of the Variance of Length Equation  

ive the formula (35). From equation (33), the quantity 
 
In this appendix we der L  is 

tion of the four error terms .  implicitly a func ),(),,(),,(),,( 22112211 yxEyxEyxEyxE yyxx

L  can be expanded as a Taylor series around (0, 0, 0, 0) to the first order as 
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 of (33)  By implicit differentiation
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ions (33) and (34), it is clear that 
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By repeating this argument for each of the four error terms and dividing by 
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Introducing (D4) into (D1) one gets 
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Now, one can apply the sum of variance formula, using the fact that the variance of a 
constant is zero in order to get equation (35).
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APPENDIX E: MACSYMA Program to Generate the Kinematic Model Error 

y,dzy]$ 

:[eyz,dxz,axz,exz,dyz,ayz,dzz]$ 
st:append(list1,list2,list3)$ 

o  a ong  */ 
0]$ 

w2:[0,1,0,y]$ 
row3:[0,0,1,0]$ 
row4:[0,0,0,1]$ 

long y */ 
w1:[1,-ezy,eyy,dxy-axy*y]$ 

row2:[ezy,1,-exy,dyy]$ 
w3:[-eyy,exy,1,dzy]$ 

rrrty:matrix(row1,row2,row3,row4)$ 
/* Final y motion relative to referenc e

y:rty.errrty$ 
nstruct the homogeneous transformation of  x relative to y */ 

 Ideal motion along x */ 
row1:[1,0,0,x]$ 
row2:[0,1,0,0]$ 
row3:[0,0,1,0]$ 
row4:[0,0,0,1]$ 
ytx:matrix(row1,row2,row3,row4)$ 
/* Rotational and translational errors along x */ 

w1:[1,-ezx,eyx,dxx]$ 

exx,1,dzx]$ 
w4:[0,0,0,1]$ 

errytx:matrix(row1,row2,row3,row4)$ 
 Final error matrix of x rlative to y motion */ 

w2:[0,1,0,-y]$ 
row3:[0,0,1,z]$ 
row4:[0,0,0,1]$ 
tw:matrix(row1,row2,row3,row4)$ 

Equations 
 
/* Construct the list of error components */ 
list1:[ezy,eyy,dxy,axy,exy,dy

st2:[ezx,eyx,dxx,exx,dyx,dzx,ezz]$ li
list3
li
/* Construct the homogeneous transformation of y relative to reference */ 
/* Ideal moti n l  y

w1:[1,0,0,ro
ro

rty:matrix(row1,row2,row3,row4)$ 
/* Rotational and translational errors a
ro

ro
row4:[0,0,0,1]$ 
e

e coordinat s */ 
rt
/* Co
/*

ro
row2:[ezx,1,-exx,dyx]$ 
row3:[-eyx,
ro

/*
ytx:ytx.errytx$ 
/* Construct the relative position of the workpiece relative to x */ 
row1:[1,0,0,-x]$ 
ro

x

 85



/* N  rotational and tran ational e or here */ o sl rr
 Final error matrix of workpiece relative to the reference */ 

rtw:rty.ytx.xtw$ 
/* Construct the motion of z relative to the reference system 

otion of z */ 
1:

w3:[0,0,1,z]$ 
row4:[0,0,0,1]$ 
rtz:matrix(row1,row2,row3,row4)$ 

otational and translational errors of z */ 
zz,eyz,dxz-axz*z]$ 

,-exz,dyz-ayz*z]$ 
w3:[-eyz,exz,1,dzz]$ 
w4:[0,0,0,1]$ 

/ 
z:rtz.errrtz$ 

lative to z */ 
tt:ident(4)$ 
 Final error matrix of tool relative to z */ 

 Get the inverse of rtt */ 
$ 

y:taylor(err[2,4],list,0,1); 
ez:taylor(err[3,4],list,0,1); 

/*

*/ 
/* Ideal m
row [1,0,0,0]$ 
row2:[0,1,0,0]$ 
ro

/* R
row1:[1,-e
ow2:[ezz,1r

ro
ro
errrtz:matrix(row1,row2,row3,row4)$ 
/* Final error matrix of z relative to reference *
rt
/* Tool re
z
/*
rtt:rtz.ztt$ 
/*
rttinv:rtt^^-1
/* Compute the final error matrix */ 
err:rttinv.rtw$ 
/* Linearize the displacement error terms by a first order Taylor Series about 0 */ 
ex:taylor(err[1,4],list,0,1); 
e
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APPENDIX F: Circle Fit Algorithm

ore we describe the algorithm for computing the least squares fitting of a circle we 
d to introduce the notion of a symmetric positive definite (SPD) matrix. A real 

 
 
Bef
ee nn×  n

 is symmetric if it equals its tra spon se, i.e. matrix A TAA = . It is positive definite if 
T  for all n-vectors x. There are some useful properties of a SPD matrix. First of 

 value falls on the main diagonal, all of whose entries are 
ositive. Furthermore, if the matrix is symmetric and the main diagonal is positive and 

the main diagonal entry of each row is larger tha  the f the absolute values of all 
e other elements of that row then the matrix is SPD eans that if we add a large 

 p l symmetric matrix, then we 
k  below. Finally a SPD matrix 

0>Axx
all the largest entry in absolute
p

n  sum o
. This mth

enough ositive multiple of the identity matrix to the origina
an ma e it SPD. This property plays a part in the algorithmc

A can be factored as 
 

RRLLA TT ==  (F1) 
 
where L is a lower triangular matrix and R is an upper triangular matrix. Either of these 
factorizations is called a Cholesky factorization. In terms of L a matrix equation of the 
orm f

 
bxLLAx T ==  (F2) 

 
can be solved in two steps by 
 

vxL
bLv

T =

=
 (F3) 

 
here v is an intermediate vector. The algorithm for computing L is relatively simple and 

h
w
can also be used to detect when A is not SPD. This check is used in t e circle fitting 
program. The Cholesky algorithm begins by setting 
 

1111L = A  (F4) 

hen going down the first column 
 

 
T

11

1Ai=1

2

L
L

ntoifor

i

=
  (F5) 

 
For column j = 2 to n 
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The c ty under 
e square root sign is positive. If not then the main circle fitting algorithm is signaled 

atrix t ositive definite. For further discussion of the Cholesky 
ct ion see Nash [30]. 

he e fittin ethod and that of Marquardt 
 L erg. F ing criteria see Dennis 
nd Schnabel [33]. Start with a set of points in the plane . Then 

define 
 

i −−+−=   (F7) 
 
where 
notation let 

jkjjjj LAL ∑−= 2

tojifor += 1

k
jkikij LLA ∑

=

−
1

 
 test on the positive definiteness of A is done by che king whether a quanti

th
that the m A is no  p

orizatfa
 
T
–

 circl g algorithm is a combination of Newton’s M
evenb or the basic algorithm see Nash [30] and for stopp

a ),(,),,( 11 NN yxyx
the residual functions 

222 )()(),,( rbyaxrbaR ii

(a, b) is the center and r is the radius to be determined. In order to simplify 
.,, rpbpa ===   Let Tpppp ),,(=321p 321 .  Form the sum-of-squares 

n functio
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The object is to minimize S over a, b, and r. At its minimum any constant multiple of the 
gradient of S is zero. For notation, let 
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Let 
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so that (F15) can be written in matrix form as 
 

(F17) 
 
 

JJH T=  
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N
 

ow (F14) can be written, using (F12), as 

RJgpHd T−=−=  (F18) 

lthough H is symmetric it is not ne ily po ay be 
ngular. The s ing of (F18) ma nt. This is discussed by Marquardt 
963]. Also, se  Nash [ stead of (F19) consider 

JT

 
A cessar

y also need 
sitive def

adjustme
inite and in fact m

si c la
[1 e ]. In
 

(J ) pdI RTJ−=+

 we scale the rameters by a matrix with only a positive main diagonal then we can 
rite 

)ˆ( 1 RpRp

Dp

==
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−

 (F20) 

hen, in terms of the scaled parame (F19) co ld be wri en 

J TT ˆˆˆˆ −=+

λ  (F19) 
 
If pa
w
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( ) ˆ RJpdIJ λ  (F21) 

here, it is not hard to s
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w how that 
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hen, (F21) bec mes 

=)

T o
 

( )( ) ( ) RJD−=pDdIDD TT11− +JJ T1 T− −λ  (

r 

F23) 
 
o
 

( ) RJpdDJJ TT −=+ λ  (F24) 

In Nash [30], D is selected as 
 

 

( ) φ+= ii
T

ii JJD  (F25) 
 
where φ  is set chosen so that the scale is not too small. 
 
Before describing the algorithm we to select stopping criteria for the final algorithm.  For 
this we choose criteria suggested by Dennis and Schnabel [33]. These criteria depend on 
the fact that near the optimum both the gradient and the difference between succeeding 
parameter vectors should be near zero. The relative gradient will be used instead of 
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simply the gradient since it is insensitive to scaling and for the parameters the relative 
hange in t e parame rs will b . The iteric h te e used se cr a are 
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co nts o radien  g  are computed in (F12) and ε  is t ach e 
epsilon wh  is tha hine n er that w en added o 1 return  1. 
 
The algori  can b ted as 
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2. While  perform the following operations 

2.1 If loop_count > 0 set 

he m in
ich t mac umb h  t s

thm e sta follows. 
ze 

0

0

0

0

0p =

0_ countloop =
20=max_

4dec
inc =
=φ
=λ

itercountloop max__ <
dec*λλ =  

2.2

 

2.3

 
2.4 Form the Jacobian matrix J using (F11) 
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 92

2.5 Form the gradient vector g  using (F12). This test uses f. 
 

2.6 Perform the gradient test in (F26) 
 

2.7 If the test is true exit with the final parameters p , otherwise continue 
 

2.8 If loop_count > 0 then perform the relative parameter test 
 

2.9 If that test is true exit with the final parameters p , otherwise continue 
 

2.10 Form JJH T=  
 

2.11 Set flag = -1 and augment_count = 0 
 

2.12 While flag < 0 perform the following operations 
 

2.12.1 Set augment_count = augment_count + 1 
2.12.2 If augment_count > 1 then set inc*λλ =  
2.12.3 Set )(HdiagD =  
2.12.4 Using (F24) and (F25) form DHaugH λ+=  
2.12.5 Perform the Cholesky decomposition as given in (F4) to (F6) and return L 

and flag, where flag = -1 if not positive definite and +1 if it is. 
2.12.6 Continue the while loop. For sufficiently large λ the augmented matrix 

will become positive definite. When it does exit the loop and continue. 
2.13 Solve RJpdaugH T−=)(  for pd  using (F3) 
 

2.14 Set 
⎪
⎩

⎪
⎨

⎧

+=
+=

=

1__ countloopcountloop
pdpp

pp

old

old

 

2.15 Return to step 2, the beginning of the while loop. 
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APPENDIX G: Analysis of Variance for Computed Orthogonalities from CMM 
Measurements 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Orthogonality Uncertainty Table    
         

Part  Measurement Replications (arc sec)  Mean df Stand. Dev. 

         
1 2.165 4.387 4.935 9.156 2.116 4.552 4 2.872672 
2 11.583 8.341 7.122 10.142 3.885 8.215 4 2.958529 

3 2.803 8.321 1.93 7.987 6.22 5.452 4 2.943944 
4 -5.523 -5.859 -8.61 -8.631 -8.007 -7.326 4 1.518122 
5 -5.834 -3.276    -4.555 1 1.809033 

6 -1.076 0.976    -0.05 1 1.450953 
7 -0.178 -5.235    -2.707 1 3.576137 
8 -12.286 -2.569    -7.427 1 6.870819 

9 -5.311 -9.561    -7.436 1 3.004845 
10 8.835 11.289    10.062 1 1.735044 
11 10.31 10.295    10.303 1 0.010287 

12 25.389 25.348    25.368 1 0.028781 
13 -8.481 -12.965    -10.723 1 3.171258 
14 -14.406 -12.813    -13.609 1 1.126567 

15 -3.403 -14.142    -8.772 1 7.593938 
16 14.823 12.433    13.628 1 1.690476 
17 -7.164 -5.542    -6.353 1 1.146354 

18 -6.462 -0.771    -3.617 1 4.024526 
19 -13.728 -14.365    -14.047 1 0.450572 
27 -9.597 -8.828    -9.213 1 0.543542 

21 -6.243 -1.735    -3.989 1 3.188012 
    

Grand Mean = -1.059      
Var.of the Means = 80.284741 Unc. Of  the Means = 8.960175277
Var. of the Stand. Dev. = 8.768066 Unc. Of  the Std. 

Dev. 
= 2.961092028

 
Table G1: Orthogonality Uncertainty Table for Parts Manufactured on the Hurco 

Machining Center. 
 



 

APPENDIX H: Analysis of Variance Tables for Circularities Computed from 
CMM Measurements 
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  Inner Circle Circularity Uncertainty Table   
         

Part  Measurement Replications (micromet.)  Mean df Stand. Dev. 

         
1 18.62 20.25 22.92 21.92 18.11 20.364 4 2.066962 
2 19.81 21.39 20.13 18.04 19.25 19.724 4 1.225594 

3 19.58 19.35 19.05 20.41 19.64 19.606 4 0.505698 
4 20.56 20.58 18.34 17.78 19.5 19.352 4 1.273232 
5 30.77 27.03    28.9 1 2.644579 

6 22.83 21.47    22.15 1 0.961665 
7 25.34 24.16    24.75 1 0.834386 
8 21.76 23.03    22.395 1 0.898026 

9 17.74 16.46    17.1 1 0.905097 
10 18.42 19.3    18.86 1 0.622254 
11 22.93 22.12    22.525 1 0.572756 

12 22.69 17.59    20.14 1 3.606245 
13 19.25 24.58    21.915 1 3.768879 
14 16.2 22.7    19.45 1 4.596194 

15 22.32 19.49    20.905 1 2.001112 
16 20.58 18.23    19.405 1 1.661701 
17 17.45 18.87    18.16 1 1.004092 

18 22.44 21.71    22.075 1 0.516188 
19 18.07 16.44    17.255 1 1.152584 
27 16.49 16.65    16.57 1 0.113137 

21 27.7 30.53    29.115 1 2.001112 
         

d Mean = 20.986       
. of the Means = 7.378079  Uncer. Of the Means 2.716  
. of the Stand. Dev. = 3.129735  Uncer. Of the Stand. Dev. 1.769  

                    Table H1: Circularity Results for Inner Slot Surface 
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  Outer Circle Circularity Uncertainty Table   
         

Part Measurement Replications (micromet.)   Mean df Stand. Dev. 

         
1 18.37 17.87 18.02 17.38 19.09 18.146 4 0.63642 
2 27.71 28.39 26.09 29.28 29.88 28.27 4 1.474161 

3 20.86 19.42 19.2 21.48 21.08 20.408 4 1.029621 
4 29.23 22.31 22.57 22.51 23.92 24.108 4 2.933517 
5 23.23 24.59    23.91 1 0.961665 

6 35.16 36.56    35.86 1 0.989949 
7 19.4 16.69    18.045 1 1.916259 
8 22.09 22.83    22.46 1 0.523259 

9 21.67 23.13    22.4 1 1.032376 
10 28.22 24.04    26.13 1 2.955706 
11 24.14 22.81    23.475 1 0.940452 

12 31.27 32.18    31.725 1 0.643467 
13 30.97 32.28    31.625 1 0.92631 
14 26.06 22.94    24.5 1 2.206173 

15 23.35 26.32    24.835 1 2.100107 
16 19.96 22    20.98 1 1.442498 
17 25.28 25.86    25.57 1 0.410122 

18 23.66 24.11    23.885 1 0.318198 
19 24.39 26.08    25.235 1 1.19501 
27 27.34 26.55    26.945 1 0.558614 

21 46.42 49.32    47.87 1 2.05061 
         

Grand Mean = 26.018       
Var. of the Means = 35.83599  Uncer. Of the Means 5.986  
Var. of the Stand. Dev. = 2.556287  Uncer. Of the Stand.Dev. 1.599  

 
                        Table H2: Circularity Results for the Outer Surface 

 
 


