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Abstract

In this article, a multi-mode model is developed for a diamond-turning process which takes into
account the cutting forces that result from the geometry of the chip area cut by a round nosed tool.
These cutting forces are assumed proportional to the uncut chip area. The chip area generated during
the cutting action is approximately modeled as a parabolic segment that is a function of the tool feed
rate, the depth of cut, and the current and previous tool-displacement histories. This leads to a system of
retarded differential equations that is studied to determine the stability of the cutting process with respect
to parameters such as feed rate, depth of cut, and spindle speed. The results are presented in the form of
stability charts. For round nosed tools, these charts are found to be perturbed forms of those obtained
for orthogonal cutting tools. Furthermore, for a given fixed feed rate, the two most significant parameters
that affect the stability regions are found to be the tool nose radius and the material damping ratio.
The predicted stability results are found to be consistent with observations made during experiments.
The model formulation, which is fairly general, should be applicable for determining stable parameter
values for a wide variety of turning processes. This work also points to the importance of considering a
multi-mode formulation for high-speed turning processes.
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1 Nomenclature

ai = amplitude for mode i
d = depth of cut
f = feed per revolution
qi = mode i amplitude about equilibrium
v = planar displacement of the boring bar
vτ = planar displacement at previous tool pass
wi = coefficients of perturbed frequency
z = axial coordinate along the boring bar
z0 = half chip width
A = cross-sectional area of the boring bar
Ac = approximate area of chip
Ap = parabolic chip area
A0 = circular chip area
E = modulus of elasticity of the boring bar
Ei = mode i equilibrium point
Gi = real part of mode i transfer function
Hi = imaginary part of mode i transfer function
I = moment-of-inertia of the boring bar
K = scaled workpiece specific energy coefficient
Kc = specific cutting energy of the workpiece
L = length of the boring bar
R = radius of diamond tool tip
Wi = spatial shape, mode i
αi, βi = approximate chip area coefficients
γ = damping coefficient of the boring bar
δ = Dirac delta function
6 = ratio of feed to chip width
λ = fraction of cutting energy transmitted to workpiece
ξi = damping factor, mode i
ρ = material density of the boring bar
τ = time per spindle revolution
τ0 = first term of perturbed delay
ψ = phase angle
Φi = mode i transfer function
ωi = natural frequency, mode i
Ω = rotation rate of the spindle

2 Introduction

The scientific study of undesirable vibrations of the tool-workpiece system in machining processes dates back

more than fifty years (Arnold,1946). This phenomenon can occur due to regenerative and non-regenerative

effects. The chatter that arises due to regenerative effects (oscillations induced as the tool removes chips

from the surface that was produced by the tool during its preceding pass) has been studied extensively

in the literature (Arnold, 1946; Merritt, 1965; Tobias, 1965; Koenigsberger and Tlusty, 1971; Hanna and

Tobias, 1974; Tlusty, 1985). In a recent study, Davies and Balachandran (1996) studied a milling process and
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demonstrated that chatter can also occur due to impact dynamics resulting from intermittent engagement

of the workpiece and the tool.

It is well known that modeling a turning process with a regenerative forcing term leads to a system of

differential equations that involve a time delay in the state variable describing the tool displacement from

its nominal position. The characteristic equation for the stability analysis of such a system is usually a

complex transcendental equation that is difficult to solve for specific eigenvalues. A graphical tool, called

a stability chart, has been introduced to show the rotational speeds at which the sytem is supposed to be

stable, unstable, or at a threshold of stability (Tobias and Fishwick, 1958). Various authors have used this

technique with one-degree-of-freedom models for analyzing stability under orthogonal cutting conditions

(e.g., Merritt (1965) , Lemon and Ackermann (1965), Hanna and Tobias (1974), Tlusty (1985), Smith and

Tlusty (1992). Recently Budak and Altintas (1995a,b) and Özdog̃anlar and Endres (1997) have extended the

method to the multi-mode case for orthogonal cutting. To the authors’ knowledge, no general algorithm has

been introduced in the literature for systematically producing multi-mode stability charts for the practical

problem of a boring bar with a round nosed tool tip in a high precision diamond turning process.

The principal contributions of this work are the following: (a) development of a finite-dimensional model for

a diamond-turning process taking into account the geometry of the chip area cut by a round nosed tool, (b)

stability analysis for a multi-mode system characterized by a single time delay, (c) demonstration that the

stability charts for a round nosed tool are modifications of those obtained for orthogonal cutting, and (d)

sensitivity analysis of the critical stability region as a function of tool length, tool tip radius, and depth of

cut. The model upon which these contributions are made is based on the following assumptions:

(1) Motions are planar.

(2) The cutting force is proportional to the uncut chip area of a rigid workpiece.

(3) The tool, attached to a rigid machine, can be modeled as a uniform and homogeneous cantilever

beam.

(4) The uncut chip area is affected by tool position after only one previous pass.

(5) The circular tool tip profile can be approximated by a parabolic tool tip profile with a depth of

cut much smaller that the tool tip radius.

(6) The feed rate is small relative to the chip width.
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The rest of this paper is organized as follows. In the second section, the authors develop a model for the

boring bar. To investigate the stability of the process, the characteristic equation and the associated stability

boundaries are derived in Section 3 along with a discussion of an efficient numerical algorithm that can be

used to graph multi-modal stability charts. In Section 4, a description of an experiment that influenced the

model parameter selections is provided. A discussion of results is given in Section 5 with a closure given

in Section 6. A determinant used in the paper is evaluated in APPENDIX A, and an estimation of the

modeling errors involved in the perturbation analysis is given in APPENDIX B.

3 Model Formulation

The boring bar used in the diamond turning process is a solid round metal shaft with a single crystal diamond

tool brazed to the end of the shaft, as illustrated in Figure 1 a. It is modeled as a uniform and homogeneous

cantilever beam with the z -axis oriented along the axial direction as shown in Figure 1b. The location z = 0

is at the fixed end and the location z = L is at the free end. The cutting portion of the tool point is assumed

to be located at z = L − R, where R is the radius of the tool nose. The x -axis is oriented vertically with

positive direction into the workpiece. The diamond turning machine and the workpiece are assumed not to

displace in the x direction and the workpiece is assumed to rotate counterclockwise. The force that deflects

the bar in the sensitive direction is assumed to be a point force proportional to the chip area (Kalpakjian,

1995) and is directed in the negative x direction. The chip area is modeled as a function of the tool feed

rate, the depth of cut, the tool tip radius, the surface description during the previous revolution, and the

surface description during the current revolution.

Assuming that the boring bar has uniform and homogeneous properties, the equation governing the planar

flexural oscillations is of the form

ρA
∂2v

∂t2
+ γ

∂v

∂t
+ EI

∂4v

∂z4
= −δ(z − L+R)λKcAc(f, d, R, v(t− τ), v(t)) (1)

for 0 < z < L, with boundary conditions

v(0, t) =
∂v

∂z
(0, t) =

∂2v

∂z2
(L, t) =

∂3v

∂z3
(L, t) = 0 (2)

and initial conditions v(z, 0) = v0(z), ∂v/∂t(z, 0) = v1(z).

In equations (1) and (2), v(z, t) is the vertical displacement of the boring bar center line relative to its

nominal position in the plane, ρ is the boring bar’s material density, A is the boring bar’s cross sectional

area, E is the boring bar’s modulus of elasticity, I is the bar’s moment-of-inertia, γ is the damping coefficient
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of the boring bar material, Kc is the specific cutting energy of the workpiece material, and λ is the fraction

of the cutting energy transmitted vertically to the tool tip. The δ function is used to simulate a point force

at the tool tip. The chip area Ac is a function of the feed rate f , the nominal depth of cut, d, the tool tip

radius, R, the tool displacements at the previous cut, v(t − τ), and the present cut, v(t), where τ is the

delay time for one spindle rotation. An underlying assumption of this model is that during one feed pass

of the round nosed tool it produces a helical groove in the workpiece that overlaps with itself depending on

the feed rate and spindle speed. The current model assumes that the feed rate is slow relative to the spindle

speed so that the grooves overlap and can lead to regenerative effects.

Under an orthogonal cutting assumption the area of the chip that can be modeled by Ac is proportional to

v(t− τ) − v(t). However, in diamond turning with a round nosed tool this proportionality does not apply
and one must compute the chip area scalloped from the surface. In Figure 2a,the area of a chip removed in

one pass of a round nosed tool of tip radius R with a nominal depth of cut d is shown. The half width for

the cut is given by

z0 =
0
2Rd− d2 (3)

and the chip area is given by

A0 = R
2sin−1

pz0
R

Q
− (R− d)z0 (4)

In a recent study by Marsh et. al (1997), it is shown that the chip area cut by a round nosed tool tip in

diamond turning can be approximated by the area cut by a tool with a parabolic tip having an appropriately

set focal length. In particular, if the focal length is set as R/2 − d/4 then the half width of the parabolic
tool tip cut is the same as the half width given in equation (3) and the depth of cut is d. The resulting area

is given by

Ap =
4

3
dz0 (5)

If we use the first two terms of the Taylor series expansion for sin−1(x) around x = 0 the relative error

between A0 and Ap can be shown to be eeeeA0 −ApA0

eeee ≈ d

8R− d (6)

A typical depth of cut in high precision diamond turning is 2µm. For a tool tip with a radius of 500µm, the

relative error computed from equation (6) would then be 0.05%. Thus, for diamond turning, the parabolic

model of a tool tip is adequate.

Given a single feed after one revolution of f , the profiles in Figure 2b for the parabolic tool tip model are
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given by

x = − z2

2R− d +
R

2
− d
4
+ vτ (7)

xf = − (z − f )
2

2R − d +
R

2
− d
4
+ v (8)

where vτ = v(t− τ). The points defining the chip area are

z1 =
f

2
+ (vτ − v)2R − d

2f
(9)

z2 =
0
(2R − d)(d+ vτ ) (10)

z3 = f +
0
(2R− d)(d + v) (11)

The area Ac is given by

Ac =

8 z2

z1

}
z2 − (z − f)2
2R− d + (v − vτ)

]
dz +

8 z3

z2

}
− (z − f)

2

2R− d + d + v

]
dz (12)

In order to study the stability of the system a symbolic manipulator was used to compute the linear approx-

imation to Ac as

Ac = α0 + α1v + β1vτ (13)

where

α0 =
24dfR − f3 − 12d2f

24R − 12d (14)

α1 =
f

2
+ z0 (15)

β1 =
f

2
− z0 (16)

Note that as f decreases relative to the other variables in the problem the chip area can be approximated by

Ac ≈ df + z0(v(t)− v(t− τ)) which is the same form as that obtained for orthogonal cutting. Geometrically

this makes sense since, as fR decreases, the tool can be approximated by a triangular wedge and the chip area

is approximately the sum of two parallelograms, one with area df and the other with area z0(v(t)−v(t− τ)).

When equation (13) is used in equation (1), that system is reduced to a set of ordinary differential equations

that are more amenable to analysis by using a Galerkin projection, similar to that used by Lee, Liu, and

Chang (1991) and Davies and Balachandran (1996). The solution is assumed to be of the form

v(z, t) =
N3
i=1

ai(t)Wi(z) (17)

where the spatial mode shapes Wi(z) are approximated by the spatial modes associated with the free vibra-

tions of an undamped, isotropic cantilever beam (Meirovitch, 1986) and ai(t) represents the time dependent
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amplitudes. If these modes are normalized they have the property,8 L

0

Wi(z)Wj(z)dz = δij (18)

where δij is the Kronecker delta. Substituting equation (17) into equation (1), multiplying throughout by

Wi(z), and carrying out a spatial integration with respect to z, one obtains the following set of ordinary

differential equations

äi + 2ξiωiȧi + ω2i ai = −Wi(L−R)λKc
ρA

}
α0

+α1

N3
j=1

aj(t)Wj(L−R) + β1

N3
j=1

aj(t− τ)Wj(L−R)
]

(19)

where ω2i ≈ EI
ρA

p
(2i−1)π

2

Q4
and ξiωi = γ/ρA for i = 1, ...N .

The right hand side of equation (19) contains a constant that represents the static cutting force that would be

experienced under nonoscillatory cutting conditions. To eliminate this term and examine the motion about

some equilibrium position, designated by the transposed vector (E1, ..., EN)
T , induced by this constant

force, a change of coordinates qi = ai − Ei is introduced, where Ei is a constant to be determined for each
i = 1, 2, ...N . Also

K =
λKc
ρA

(20)

Using the notation qiτ = qi(t− τ) and Wi =Wi(L −R), system (19) can be rewritten as

q̈i + 2ξiωiq̇i + ω2i (qi + Ei) = −WiKα0 −WiKα1

N3
n=1

(qn + En)Wn

−WiKβ1

N3
n=1

(qnτ + En)Wn (21)

for i = 1, ..., N . To eliminate the constant term, one solves the linear system

ω2iEi +K(α1 + β1)Wi

N3
n=1

EnWn = −Kα0Wi (22)

To simplify further, the notation c0 = Kα0 and c1 = K(α1 + β1) is introduced. By using the result from

APPENDIX A, solving (22) for a nontrivial solution vector (E1, ..., EN )
T is equivalent to requiring the

following determinant, D, of the left hand coefficient matrix of system (22) to be nonzero

D =

eeeeee
ω21 + c1W1W1 c1W1W2 · · · c1W1WN

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c1WNW1 c1WNW2 · · · ω2N + c1WNWN

eeeeee
=

N�
n=1

ω2n + c1
N�
n=1

⎛⎝ N�
k=1
k=n

ω2k

⎞⎠W 2
n W= 0 (23)
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which is true since c2 is positive for a positive feed rate. Thus the equations (22) can be inverted to solve

for a nontrivial equilibrium position Ei.

Assume that the motions described by the system (19) are considered about the equilibrium point, one will

need to study the stability of the following system of N equations

q̈i + 2ξiωiq̇i + ω2i qi = −WiKα1

N3
n=1

qnWn −WiKβ1

N3
n=1

qnτWn (24)

System (24) can also be put into vector form by defining q = (q1...qN )
T and rewritting the system as

q̈+

⎛⎝ 2ξ1ω1 · · · 0
. . . . . . . . . . . . . . . . . . .
0 · · · 2ξNωN

⎞⎠ q̇+
⎛⎝ ω21 +Kα1W1W1 · · · Kα1W1WN

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Kα1WNW1 · · · ω2N +Kα1WNWN

⎞⎠q
= −Kβ1

⎛⎝ W1W1 · · · W1WN

. . . . . . . . . . . . . . . . . . . . .
WNW1 · · · WNWN

⎞⎠qτ (25)

with initial conditions q(0) = 0, q̇(0) W= 0, and q(t) = 0 for t ∈ [−τ, 0]. The existence and uniqueness of
solutions to (25) are guaranteed by the general existence and uniqueness conditions given in Hale and Lunel

(1993).

4 Stability of the Process

The stability of the process corresponds to the stability of the equilibrium position (q1...qN) = (0...0) of the

system (25). If this equilibrium position is stable (unstable), the diamond turning process is said to be stable

(unstable). The instability of this equilibrium position will mean undesirable oscillations of the tool during

the manufacturing process. The characteristic equation of system (25) permits us to determine the stability

boundaries between stable and unstable motions.

4.1 Characteristic Equation

In order to find the characteristic equation, the Laplace transform of system (25) is taken. The system

ML(q) = q̇(0) is obtained, noting q(0) = 0, where L(q) is the Laplace transform of q and

M =

⎛⎝ s2 + 2ξ1ω1s+ ω21 +K(α1 + β1e
−sτ )W1W1 · · · K(α1 + β1e

−sτ)W1WN

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K(α1 + β1e

−sτ)WNW1 · · · s2 + 2ξNωNs+ ω2N +K(α1 + β1e
−sτ )WNWN

⎞⎠
(26)

8



The characteristic equation is computed by setting the determinant of M to zero. The determinant is

evaluated, by using the result in APPENDIX A, as

det(M) =
N�
j=1

(s2 + 2ξjωjs+ ω2j ) +K(α1 + β1e
−sτ)

N3
m=1

(
N�
k=1
k=m

(s2 + 2ξkωks+ ω2k))W
2
m (27)

For i = 1, ..., N , with ξi W= 0, the polynomials s2 + 2ξiωis+ ω2i cannot have a zero on the imaginary axis.

The right hand side of equation (27) is referred to in the literature as a quasipolynomial (El’sgol’ts and

Norkin, 1973). The solutions of the transcendental characteristic equation (27) are also called characteristic

roots. Since there are an infinite number of them, only the stability boundaries between regions having all

characteristic roots with negative real parts (stable regions) and those with at least one characteristic root

with a positive real part (unstable regions) are usually computed. The graphs of these boundaries are the

stability charts. For a given depth of cut, d and feed rate f these stability charts will be drawn in two

dimensional parameter space (Ω,K) where Ω = 1
τ is the spindle rotation rate and K is a material parameter

proportional to the specific cutting energy, Kc, given by equation (20). In this paper we will be concerned

with the effect that different materials will have on the stability of the process so that K becomes a natural

parameter. The width of cut parameter that is conventionally used in the stability analysis of orthogonal

cutting is appears in the round nosed tool problem in a nonlinear manner and is not directly availble as an

independent parameter.

4.2 Stability Boundaries

Because this problem is somewhat different than that of simple orthogonal cutting, calculation of stability

boundaries is somewhat more involved. However, for feeds, f , and depths of cut, d, much smaller than

the tool tip radius, R, the equations are amenable to analytic solution. Following the orthogonal cutting

analysis, let s be a complex variable. Then det(M) = 0 translates to

1 +K(α1 + β1e
−sτ)

N3
m=1

Φm(s)W
2
m = 0 (28)

where

Φm(s) =
1

s2 + 2ξmωms+ ω2m
(29)

For the stability boundary analysis, let s = iω. Then

Φm(iω) = Gm(ω) + iHm(ω) (30)

where
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Gm(ω) =
1

ω2m

}
1−
p

ω
ωm

Q2]
^w
1−
p

ω
ωm

Q2W2
+
p
2ξm

p
ω
ωm

QQ2� (31)

Hm(ω) =
1

ω2m

�
−2ξm

p
ω
ωm

Q=
^w
1−
p

ω
ωm

Q2W2
+
p
2ξm

p
ω
ωm

QQ2�

After substituting equations (30) and (31) into equation (28) and equating real and imaginary parts to zero

one obtains:

1 +K

^
N3
m=1

W 2
mGm(ω)

�
(α1 + β1 cosωτ) +K

^
N3
m=1

W 2
mHm(ω)

�
β1 sinωτ = 0 (32)

−
^

N3
m=1

W 2
mHm(ω)

�
(α1 + β1 cosωτ) +

^
N3
m=1

W 2
mGm(ω)

�
β1 sinωτ = 0 (33)

In order to simplify the notation let

G(ω) =
N3
m=1

W 2
mGm(ω) (34)

H(ω) =
N3
m=1

W 2
mHm(ω) (35)

From equation (33), one can obtain

H(ω)

G(ω)
=

β1
α1
sinωτ

1 + β1
α1
cosωτ

(36)

The method of perturbations will now be used in two steps to show that the right hand side of equation

(36) can be put into a form similar to one that arises in the stability analysis of orthogonal cutting. From

equation (15) and (16), one obtains

β1
α1
=
−1 + f

2z0

1 + f
2z0

(37)

For the sake of notation let

6 =
f

2z0
(38)

To be meaningful the feed must be less than the denominator, which is the chip width; the essential condition

we require is that 0 < 6 < 1. In the case of diamond turning 6 is often very small. For example, using a

typical feed rate of 10µm/s at 300 revolutions per minute, one has f = 2µm per revolution. Then for a tool

tip of radius R = 500 µm and a depth of cut of d = 2 µm, one can compute 6 = 0.0224 from equation (38).

By the geometric series, for 0 < 6 < 1,

1

1 + 6
= 1− 6+ 62 − · · · (39)
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By using equations (37), (38) and (39) one can write

β1
α1
= (−1 + 6)(1 − 6+ 62 − · · ·) ≈ −1 + 26 (40)

This implies that the right hand side of (36) can be estimated by

β1
α1
sinωτ

1 + β1
α1
cosωτ

≈ (−1 + 26) sinωτ
1 + (−1 + 26) cosωτ (41)

Because the right hand side of (41) is near the ratio − sinωτ
1−cosωτ (a ratio obtained under orthogonal cutting

conditions) we conjecture that, as a first step, if we consider a perturbed frequency

ω(6) = w0 + 6w1 + 62w2 + · · · (42)

then we can solve for the coefficients wi for i = 0, 1, 2, . . . so that to a first order 6 approximation

H(w0 + 6w1)

G(w0 + 6w1)
≈ (−1 + 26) sin(w0 + 6w1)τ0
1 + (−1 + 26) cos(w0 + 6w1)τ0

(43)

where w0 and τ0 are selected to satisfy the orthogonal cutting conditions obtained when 6 = 0 (see AP-

PENDIX B). Using the Taylor series, sum of angles formulas and the assumption that 6w1τ is small we can

rewrite (43) as

H(w0) + 6w1H
I(w0)

G(w0) + 6w1GI(w0)
≈ − sinw0τ0 + 6(2 sinw0τ0 − w1τ0 cosw0τ0)
(1− cosw0τ0) + 6(2 cosw0τ0 − w1τ0 sinw0τ0) (44)

The appropriate choice for w1 is shown in APPENDIX B as

w1 =
2w0 sinw0τ0G(w0) − 2w0 cosw0τ0H(w0)

w0τ0H(w0) sinw0τ0 + w0τ0G(w0) cosw0τ0 + w0(1 − cosw0τ0)HI(w0) + w0 sinw0τ0GI(w0) (45)

In order to use the methods from orthogonal cutting to develop stability charts for round nosed tools we

must, in the second step, find a function τ(6), defined on an interval about 6 = 0 such that τ(0) = τ0 and

(−1 + 6) sinω(6)τ0
(1 + 6) + (−1 + 6) cosω(6)τ0

=
− sinw0τ(6)
1− cosw0τ(6) (46)

The details of this argument can also be found in APPENDIX B. Note that in the limit as 6→ 0 both sides

of (46) tend to − sinw0τ01−cosw0τ0 . This fraction plays a prominent part in the stability analysis of orthogonal cutting.

Although the left hand side of (46) is non-singular, it approaches the right hand singular function in the limit

as 6→ 0. The two sides are equal up to a neighborhood of the singularity which occurs for w0τ(6) equal to

a multiple of 2π. This is so since the equality only holds for some interval about 6 = 0 (see APPENDIX B).

The closeness of these two functions is shown in Figure 3. The figures differ in a neighborhood of 2π.

Equation (36) can now be rewritten in the form

H(ω(6))

G(ω(6))
=
− sinw0τ(6)
1 − cosw0τ(6) = tanψ (47)

11



where ψ is the phase of the transfer function that is given by

ψ = arctan

w
H(ω(6))

G(ω(6))

W
(48)

To solve for w0τ(6), half angle formulas are used in equation (47) to show

tanψ = −
cos
p
w0τ(6)
2

Q
sin
p
w0τ(6)
2

Q = − cotww0τ(6)
2

W
= tan

w
π

2
+
w0τ(6)

2
± nπ
W

(49)

Then ψ = π
2 +

w0τ(6)
2 ± nπ. Selecting the negative sign and n = 2 + p for p = 0, 1, 2, ..., one obtains

w0τ(6) = 2 (ψ + pπ) + 3π (50)

for p = 0, 1, 2, .... Using equation (50), the spindle rotation rate is computed as

Ω(6) =
1

τ(6)
=

w0
2 (ψ(6) + pπ) + 3π

(51)

Next substitute equation (40) and the first equation in (47) into (32) and keep only first order terms in 6 to

get

K(6) ≈ −1
2α1G(w0) + 6α1P (w0)

(52)

where

P (w0) = G(w0)[2 cosw0τ0 +

w
w1
w0

W
(w0τ0) sinw0τ0]

+H(w0)[2 sinw0τ0 −
w
w1
w0

W
(w0τ0) cosw0τ0]

+w1G
I(w0)(1− cosw0τ0) (53)

−w1H I(w0) sinw0τ0

As 6→ 0, the cutting energy parameter K approaches the form for orthogonal cutting.

Equations (48) and (52) are related to the recent results of Özdog̃anlar and Endres (1997). However, they

only develop equations for orthogonal cutting for systems up to three degrees-of-freedom. Their results do

not account for the round nosed tool correction.

A stability chart is computed by the following algorithm, which has been implemented in software optimized

to carry out vector calculations. First, the zeroes of G(ω) are computed. Subsequently, the frequency

intervals in which G(ω) is negative are determined in order to select the frequency intervals associated with

each mode. The denominator of (52) must be selected as negative in order to make K(6) positive and

physically meaningful. If we consider two modes of oscillation only, then N = 2 in equation (52) and there
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will be two intervals corresponding to these two modes. For example, in the case of a 101.6 mm (4 in) bar with

a tool tip radius of 500 µm and a depth of cut of 2.0 µm the graph of the denominator, within the parentheses,

of K(6) is shown in Figure 4. The two intervals, for this case, are given by (2.73×103s−1, 1.23× 104s−1) and
(1.71×104s−1,+∞). One next discretizes these intervals into frequency vectors. For each of these frequency
vectors one computes a K vector using (52). Then, for each p = 1, 2, ..., one uses equation (51) to compute

a vector Ω associated with each vector K(6). Finally, the K-vectors are plotted versus the Ω -vectors for

several values of p. This plot, called a stability chart, will show a sequence of lobes for each mode.

5 Selecting Model Parameters

5.1 Experimental Arrangement

The experiment described in this section was conducted by Evans and McGlauflin (1988) at the National

Institute of Standards and Technology (NIST) and influenced the modeling efforts undertaken in this work.

The workpiece, a copper tube, was kinematically mounted to a vacuum chuck of a diamond turning machine.

A diamond tipped tool of nose radius of 500 µm was brazed to a steel boring bar of diameter 6.35 mm and

length of 101.6 mm. This boring bar was subsequently mounted to a tool post. For a schematic diagram of

the boring bar, diamond tipped tool and the workpiece, refer to Figure 1a. Many tool passes were made into

and out of the copper tube. The initial feed rate was 20 mm per minute at 300 revolutions per minute. The

initial depth of cut on the inward passes was 3 µm and the depth of cut on the outward finishing passes was

2 µm. The lowest feed value used was 0.67 µm per revolution and the smallest depth of cut used was 0.5

µm. The revolutions per minute, feed rates, and depths of cut were all varied but the boring bar was found

to encounter severe vibrations in all cases. The best finish was achieved with the lowest feed and smallest

depth of cut.

5.2 Model Parameters

The boring bar parameters selected for the stability analysis were based on the properties of the boring bar

used in the experiment. The diameter of the boring bar was 6.35 mm (1/4 in). The density of the steel was

taken to be ρ = 7850 kg/m3 and the modulus of elasticity was taken to be E = 200 × 109 Pa. The specific

cutting energy of copper was taken as Kc = 2.35 × 109 N/m2 (Kalpakjian, 1995). The damping factor for

the first mode, ξ1, was estimated as 0.001 (Evans, 1996), and the damping factor for the second, ξ2, was

determined from

13



ξ2 = ξ1
ω1
ω2

(54)

Several parameter ranges in the stability analysis were selected based on the diamond turning machine

performance ranges. For the machine used in this work, a diamond turning operator (McGlauflin,1997)

suggested that a good rotation rate range to study for stability analysis be restricted between 200 and 1000

revolutions per minute although up to 3000 revolutions per minute were feasible. The machine used in the

experiment had a depth of cut resolution of 10 nm and a similar resolution for feed per revolution. For the

stability analysis a range of feed rates from 10 nm per revolution to 1.5µm per revolution and depths of cut

from 10 nm to 2 µm were selected.

The tool tip radius had a potentially wide range. Although the tool radius in the experiment was 500 µm

the tool tip radius could have been set as low as 1 µm. For the stability analysis, several tool radii were

considered from 500 µm to 1 µm, with properly selected feeds and depths of cut so that 0 < 6 < 1.

Although the Galerkin projection allows for an arbitrary mode expansion, for convenience, only a two mode

expansion in equation (17) was assumed. The higher mode was added in order to examine the stability

effects of the second mode at higher rotation rates. Third and higher modes do not affect the stability of

the process in the chosen parameter space.

6 Results and Discussion

As was noted earlier in this paper, one would conventionally present stability chart information graphically

as a plot of a chip width parameter versus spindle rotation rate. From equation (3) the chip width, 2z0, for

the round nosed tool case, is seen to be a function of the tool nose radius and depth of cut. Thus, the chip

width for a round nosed tool is not an independent parameter and cannot be used in as direct a manner as it

can be in computing stability charts for orthogonal cutting. The parameter, from equation (24), that can be

computed directly is a material parameter proportional to the specific cutting energy of the workpiece, given

by equation (20). We have therefore chosen to concentrate on the effect that material has on the stability of

diamond turning with round nosed tools. We present in this paper, for convenience, the stability charts as

a plot of a specific cutting energy parameter versus spindle rotation rate.
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6.1 Critical Parameter Values and Stability Lobes

In Table 1, the specific cutting energies (in N/m2) of workpiece materials bored by eight tool lengths ranging

from 0.0127 m (1/2 in) to 0.102 m (4 in) are given. The critical cutting energy is the highest value that Kc

can take on before instability occurs at a given feed rate, depth of cut and tool nose radius. The stability

chart given in Figure 5 shows that at rotation rates within the usual operating range the lobes overlap each

other, allowing relatively small gaps between them for stable operation. This figure shows the stability lobes

for a bar, such as the 101.6 mm (4 in) boring bar, with a round nosed tool of 500µm radius at a feed of 1µm

per revolution and 0.1 µm depth of cut. For example, at a rotation rate of 250 revolutions per minute, the

critical cutting energy is approximately 4 × 107 N/m2. For 240 revolutions per minute the critical cutting

energy is approximately 2 × 107 N/m2 and falls at the bottom of a lobe. This particular critical cutting

energy provides an idea of the value below which the boring bar is uniformly stable, but as is clear from the

figure there are regions above this minimum critical cutting energy, especially at high rotation rates, where

stable operations can be realized. These regions fall in between the lobes. Similar stable regions between

lobes have been exploited by Smith and Tlusty (1992) who have developed an algorithm to automatically

adjust the rotation rate of a milling machine to find the nearest stable region between lobes when their

system detects chatter conditions.

All of the parameter combinations selected in Table 1 satisfy the convergence criteria, 0 < 6 < 1. The first

three rows of the table show the length, depth of cut and tool nose radius used for each column. Below these

rows the first column shows the feeds selected for examination. The other eight columns show the critical

workpiece material cutting energy for a given length, depth of cut, tool tip radius and feed. The entries

that are blank are critical specific cutting energies that are below that of copper, the principal workpiece

for this study. Thus, copper would be an unstable material for those parameter combinations. The cutting

energy of copper is taken as 2.35×109N/m2. This is the average of the values for copper given in Kalpakjian
(1995) and is the value used here for comparison. We note that as the length of the bar increases the critical

cutting energy decreases. Above the critical cutting energy value the bar motions are unstable, leading to

chatter, except in some regions of the parameter space. For example, for a 15.9 mm (5/8 in) bar at a 2

µm depth of cut, with a 500 µm tool tip radius and a feed of 1.5 µm per revolution the critical cutting

energy is 5.92×109 N/m2 for the first mode. Copper’s critical cutting enery is below this value, so, for this
combination of parameters, copper would be stable.

Since the critical cutting energy of copper is greater by two orders of magnitude than the lobe minima of

4.17×107 N/m2 for the case in Figure 5, there is no possibility of stability, which helps explain the observed
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Table 1: Critical Specific Cutting Energies at 600 r/min

Critical Cutting Energy Kc(N/m
2)× 10−9

L(mm) 12.7 15.9 19.1 22.2 25.4 50.8 76.2 101.6
d(µm) 2 2 2 1 0.5 0.1 0.1 0.05
R (µm) 500 500 500 500 500 10 1 1

f (µm/r)
0.10 12.1 6.01 3.41 3.04 2.85 5.24 4.87 3.63
0.20 12.1 6.00 3.41 3.04 2.84 5.09 4.11 2.49
0.30 12.0 6.00 3.41 3.03 2.83 4.91 3.51
0.40 12.0 5.99 3.40 3.03 2.83 4.69 3.00
0.50 12.0 5.98 3.40 3.02 2.82 4.48 2.52
1.00 12.0 5.95 3.38 3.00 2.79 3.64
1.50 12.0 5.92 3.36 2.98 2.76 2.86

instabilities of the experiments at NIST. The initial feed rate selected for the NIST experiment was 66.6 µm

per revolution. For a 500 µm radius tool and a 2 µm depth of cut the critical cutting energy for this feed is

7.92×106N/m2, which is approximately three orders of magnitude lower than copper. The boring bar would
clearly be unstable, as the experiment indicated. However, for a bar of length 19.1 mm, the results shown

in Table 1 indicate that it is possible to machine in a stable manner at feeds commonly used in diamond

turning operations.

6.2 Sensitivity Analysis Results

Figure 6 shows the critical cutting energy values at the low feed of 0.10 µm per revolution as a function

of boring bar length and tool tip radius for a depth of cut of 1 µm. As shown in Table 1 this feed value

can allow stable diamond turning of copper for all of the lengths selected depending on depth of cut and

tool nose radius. The figure shows the critical values of Kc for the range of bar lengths from about 30 mm

to 101.6 mm and tool tip radii from 1 µm to 500 µm. For smaller bar lengths the critical cutting energies

were above those for most practical materials including hard steel. The most significant observation here

is that for smaller tool tip radii and smaller bar lengths the critical cutting energies rise dramatically. The

figures for shallower depths of cut are similar and form a family of surfaces one above the other with the

higher surfaces associated with shallower depths of cut. Although decreasing the depth of cut makes gains

in increasing the stability region, its gains are relatively small compared to reducing the boring bar tool

tip radius. Combining a reduction both in the bar length and the tool tip radius brings about a significant

increase in the stability region as would be expected.

Figure 7 shows the quadratic behavior of the critical cutting energy as a function of the damping ratio. This
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figure represents the results for a 101.6 mm (4 in) bar with a 500 µm tool tip radius at a 2 µm depth of cut

and a feed of 0.1 µm per revolution. A fit of a quadratic equation to this data indicates that the function

is essentially composed of a linear plus quadratic term. This indicates that implicit in the model is a result

similar to the result that, in orthogonal cutting, the chip width limit can be analytically modeled as a linear

plus quadratic function of the damping ratio. A fit was used because the exact calculation of the quadratic

relation is much too cumbersome to display and requires a symbolic manipulator to generate in the present

case.

The effect on stability of adjusting the damping ratio was exploited in a later experiment at NIST. The

experiment involved the diamond turning of a long cantilever rod. A damping mechanism was attached to

the free end of the rod. It provided sufficient damping to allow stable turning of the rod (Clary, 1997).

6.3 Multi-Mode Case: Stability Chart

In Figure 8, one can observe the effect of the second mode on the stability regions of the first mode. This

figure shows that stability lobes for the second mode can overlay the stable regions for the first mode.

Although, for diamond turning, the rotation rates shown in the range of 20,000 revolutions per minute are

not used, the fact that second mode stability lobes can be encountered within first mode stability regions is

a result that could affect high-speed turning or milling when high spindle speeds are used with long tools.

7 Closure

Based on the findings of the current work, the following points are made:

(a) The stability charts for round nosed tools used in diamond turning can be computed as a perturbation

of the stability charts obtained for orthogonal cutting. The perturbation parameter relates the feed to the

chip width. As the feed approaches zero the stability analysis approaches that for orthogonal cutting.

(b) A general method of generating stability charts for boring bars and an associated vector based algorithm

for computing them has been presented. In this algorithm, one makes use of general transfer function

techniques for multiple-mode systems with a single time delay.

(c) The stability charts confirm rules developed from diamond turning operator’s experience at NIST. Ma-

chinists (McGlauflin, 1997) have a rule-of-thumb that the length of a boring bar should ordinarily be no

longer than 2.5 times the width of the boring bar. Thus, for the 6.35 mm (1/4 in) width bar with a 500 µm

17



tool tip radius, at 2µm depth of cut, the rule-of-thumb would indicate that the proper boring bar should be

approximately 15.9 mm (5/8 in) in length. From Table 1, one can discern that for a 500 µm tool tip radius,

at 2 µm depth-of-cut, a machinist could select a 19.1 mm (6/8 in) bar, which confirms the rule-of-thumb and

also indicates that this rule is somewhat conservative in this case. Beyond these lengths, for the specified

tool tip radius and depth of cut, the critical cutting energies drop below the critical cutting energy of copper

unless, as shown, the depth of cut or other parameters, including the material damping ratio, are adjusted.

The rule-of-thumb does not assume adjustments to the material damping ratio. However, adjustments to

the material damping ratio clearly affect the stability regions as found in the NIST experiments.

(d) Higher vibration modes can affect the stability of the machining process in high speed machining. High

speed machining has been of interest for some time (King,1985). Spindles with speeds greater than 20,000

revolutions per minute are being produced and utilized in industry for milling. At high rotation rates single-

mode models are inadequate to predict stability regions at cutting energies above the minimal critical cutting

energy. The reason for this is that although at higher speeds the stability lobes of the first mode spread

apart and leave gaps between them the lobes of higher modes begin to fill in portions of these gaps with

fine structure lobes thus preventing the gaps from being entirely stable. To optimize regions of stability at

higher rotation rates, one would need to examine gaps in between the higher mode lobes.
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A A Useful Determinant

In this Appendix a determinant, used in this paper, will be established by an inductive argument. It will be

shown that

D =

eeeeeeee
a1 + cb1b1 cb1b2 · · · cb1bN
cb2b1 a2 + cb2b2 · · · cb2bN
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cbN b1 cbNb2 · · · aN + cbN bN

eeeeeeee
=
�N
n=1 an + c

�N
n=1

p�N
k=1
k=n

ak

Q
b2n (55)

For N = 1 the result holds since in that case D = a1+cb
2
1. Now assume the result is true for all determinants
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of the above form of order ≤ N − 1. One can then show that it also holds for order N . To do this the
determinant D is expanded by the first column to get

D = (a1 + cb
2
1)

eeeeee
a2 + cb2b2 cb2b3 · · · cb2bN
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cbNb2 cbNb3 · · · aN + cbN bN

eeeeee
+(−1)3cb2b1

eeeeeeee
cb1b2 cb1b3 · · · cb1bN
cb3b2 a3 + cb3b3 · · · cb3bN
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cbN b2 cbN b3 · · · aN + cbNbN

eeeeeeee (56)

...

+(−1)N+1cbNb1

eeeeeeee
cb1b2 · · · cb1bN−1 cb1bN
a2 + cb2b2 · · · cb2bN−1 cb2bN
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cbN−1b2 · · · aN−1 + cbN−1bN−1 cbN−1bN

eeeeeeee
The inductive hypothesis is used on the first term of (56). On all of the other terms cb1 is factored from

the first row and set to multiply the determinant in that term. Then, the first row of the determinant in

each term is multiplied by the appropriate factor −cbi and is then added to each of the lower rows. This
operation does not affect the value of the determinant. The result of these operations is given by

D = (a1 + cb
2
1)
p�N

n=2 an + c
�N
n=2

p�N
k=2
k=n

ak

Q
b2n

Q

−c2b2b21

eeeeeeee
b2 b3 · · · bN
0 a3 · · · 0
. . . . . . . . . . . . . . . .
0 0 · · · aN

eeeeeeee (57)

+
�N−1
n=3 (−1)n+1c2bnb21

eeeeeeeeeeeeee

b2 b3 · · · bn−1 bn bn+1 · · · bN
a2 0 · · · 0 0 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · an−1 0 0 · · · 0
0 0 · · · 0 0 an+1 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · 0 0 0 · · · aN

eeeeeeeeeeeeee
+(−1)N+1c2bNb21

eeeeeeeeee
b2 b3 · · · bN−1 bN
a2 0 · · · 0 0
0 a3 · · · 0 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · aN−1 0

eeeeeeeeee
The determinant in the second term can be computed by multiplying the diagonal elements. Since the

permutation of two columns of a determinant multiplies the determinant by −1 the determinants in the
remaining terms can be computed by permuting the n-th column n− 2 columns to the left. Then

D = (a1 + cb
2
1)
p�N

n=2 an + c
�N
n=2

p�N
k=2
k=n

ak
Q
b2n

Q
− c2b21b2(b2a3 · · ·aN )

+
�N−1
n=3 (−1)n+1c2b21bn(−1)n−2(bna2 · · · an−1an+1 · · · aN)

+(−1)N+1c2b21bN(−1)N−2(bNa2 · · · aN−1) (58)
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= (a1 + cb
2
1)
p�N

n=2 an + c
�N
n=2

p�N
k=2
k=n
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Q
b2n

Q
− c2b21
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=
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which was to be shown.

B Perturbation Details

In order to show that there is a perturbed frequency series (42) that satisfies equation (43) we will use the

implicit function theorem (Apostol,1974) in the following form. Let F (ω, 6) be an infinitely differentiable

function of ω and 6. Suppose there is an (w0, 0) such that F (w0, 0) = 0 and ∂F
∂ω (w0, 0) W= 0. Then there

is an infinitely differentiable function ω(6), defined on an interval about 6 = 0, such that ω(0) = ω0 and

F (ω(6), 6) = 0.

For the current problem we can define, by cross multipying equation (43), a function

F (ω, 6) = H(ω)[1 + (−1 + 26) cosωτ ] −G(ω)(−1 + 26) sinωτ (59)

In order to find an w0 such that F (w0, 0) = 0 note that

F (ω, 0) = H(ω)(1 − cosωτ)−G(ω)(− sinωτ) (60)

implies

H(ω)

G(ω)
=
− sinωτ
1 − cosωτ (61)

The phase, ψ, of the left hand side of equation (61) can be computed as

ψ = arctan

w
H(ω)

G(ω)

W
(62)

On the right hand side of equation (61) apply the half angle formulas to show that

− sinωτ
1 − cosωτ = −

cos
D
ωτ
2

i
sin
D
ωτ
2

i = − cotpωτ
2

Q
= tan

pπ
2
+
ωτ

2
± nπ

Q
(63)

Then ψ = π
2 +

ωτ
2 ± nπ. Selecting the negative sign and n = 2 + p for p = 0, 1, 2, ..., one obtains

ωτ = 2 (ψ + pπ) + 3π (64)

for p = 0, 1, 2, .... This shows that the τ ’s are related to the ω’s by

τ =
2 (ψ + pπ) + 3π

ω
(65)
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The set of feasible ω’s is selected as follows. Note that, using equation (15) and equation (38) for the case

of 6 = 0 equation (61) can be inserted into equation (32) to show that

K = − 1

2z0G(ω)
(66)

In order for K to be physically meaningful, however, it must be positive. Thus, for each w0 such that

G(w0) < 0, compute τ0 from equation (65) so that the first condition of the implicit function theorem is

satisfied as

F (w0, 0) = H(w0)(1 − cosw0τ0)− G(w0)(− sinw0τ0) = 0 (67)

Using equation(59) it is not hard to show that

∂F

∂ω
(w0, 0) =

1− cosw0τ0
G(w0)

[HI(w0)G(w0)−GI(w0)H(w0)]− τ0G(w0) (68)

which can numerically be shown to be nonzero on the intervals for which G(w0) < 0. Therefore, by the

implicit function theorem there is a function ω(6), such that ω(0) = w0 and F (ω(6), 6) = 0 which implies

equation (43).

We will next solve for ω(6) up to the first order 6 term, w1. To do this we assume that 6w1 and 6w1τ0 are

small. Then to the first order 6

H(ω(6))

G(ω(6))
≈ H(w0) + 6w1H

I(w0)
G(w0) + 6w1GI(w0)

(69)

and, using sums of angles formulas,

(−1 + 6) sinω(6)τ0
(1 + 6) + (−1 + 6) cosω(6)τ0

≈ − sinw0τ0 + 6(2 sinw0τ0 − w1τ0 cosw0τ0)
(1− cosw0τ0) + 6(2 cosw0τ0 − w1τ0 sinw0τ0) (70)

Equating the right hand sides of equations (69) and (70) we can solve for w1 as

w1 =
2w0 sinw0τ0G(w0) − 2w0 cosw0τ0H(w0)

w0τ0H(w0) sinw0τ0 + w0τ0G(w0) cosw0τ0 + w0(1 − cosw0τ0)HI(w0) + w0 sinw0τ0GI(w0) (71)

where again we set w0τ0 = 2ψ0 + 3π.

The previous argument established that there is a frequency function of 6 that satisfies equation (42). In

order to extend the arguments used in orthogonal cutting to the case of generating stability charts for round

nosed tools we next need to show that there also exists a function τ (6) such that τ(0) = τ0 and

(−1 + 6) sinω(6)τ0
(1 + 6) + (−1 + 6) cosω(6)τ0

=
− sinw0τ(6)
1− cosw0τ(6) (72)

Again, we apply the implicit function theorem to the following function of τ .

T (τ, 6) = (1 − cosw0τ)((−1 + 6) sinω(6)τ0) + sinw0τ [(1 + 6) + (−1 + 6) cosω(6)τ0] (73)
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By selecting w0 so that G(w0) < 0 and τ0 satisfing equation (65) we have T (τ0, 0) = 0. The derivative is

easily seen to be

∂T

∂τ
(τ0, 0) = w0(cosw0τ0 − 1) (74)

The right hand side is nonzero since we select w0τ0 W= 2nπ, for n = 0,±1,±2, .... Therefore from equations

(43) and (72) we can write

H(ω(6))

G(ω(6))
= − sinw0τ(6)

1− cosw0τ(6) (75)

Proceeding as in orthogonal cutting we define the phase angle by

ψ(6) = arctan

w
H(ω(6))

G(ω(6))

W
(76)

The rotation rate is then given by

Ω(6) =
1

τ(6)
=

w0
2(ψ(6) + pπ) + 3π

(77)

for p = 0, 1, 2, .... Notice that to a first order 6

tanψ(6) ≈ H(w0) + 6w1H
I(w0)

G(w0) + 6w1GI(w0)
(78)

From equation (32) we can easily solve for K(6). Using equations (40) and (69) and trigonometric formulas

for the sums of angles we can approximate K(6) up to the first order 6 by

K(6) ≈ −1
2α1G(w0) + 6alpha1P (w0)

(79)

where

P (w0) = G(w0)[2 cosw0τ0 +

w
w1
w0

W
(w0τ0) sinw0τ0]

+H(w0)[2 sinw0τ0 −
w
w1
w0

W
(w0τ0) cosw0τ0]

+w1G
I(w0)(1− cosw0τ0) (80)

−w1H I(w0) sinw0τ0

where again w0τ0 = 2ψ0 + 3π.
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C CAPTIONS

Figure 1a: Boring bar and Workpiece Fixtured for Diamond Turning.

Figure 1b: Model of the Boring bar.

Figure 2a: Chip Area Parameters for One Pass of the Tool over the Workpiece with a Depth of Cut, d.

Figure 2b: Chip Area Parameters for Two Consecutive Passes of the Tool over the Workpiece. The Profile

of the Current Pass is xf (t) and that of the Previous Pass is x(t).

Figure 3: The Nonsingular Left Hand Ratio (solid) and the Singular Right Hand Ratio (dashes) of Equation

(44) for the Case 6 = 0.001.

Figure 4: Plot of the Dimensionless Denominator in Equation (52) for the Case of a 101.6mm (4 in) Bar

with a 500 µm Tool Tip Radius at 2 µm Depth of Cut and Feed of 0.1 µm per Revolution.

Figure 5: Stability Chart for a 101.6mm (4 in) Bar during a 2 µm Depth of Cut Showing the Overlapping

Lobes at Normal Rotation Rates.

Figure 6: Critical Cutting Energy as a Function of Boring Bar Length and Tool tip Radius for a 1 µm Depth

of Cut and Feed of 0.1 µm per Revolution.

Figure 7: Critical Cutting Energy as a Function of the Damping Ratio for a 101.6mm (4 in) Bar with a

500 µm Tip Radius at 2 µm Depth of Cut and a Feed of 0.1 µm per Revolution.

Figure 8: Stability Chart for a 101.6mm (5/8 in) Bar during a 2 µm Depth of Cut Showing the Second Mode

Lobes Overlapping Portions of the Stability Region Between First Mode Lobes at High Rotation Rates.

Solid and Dashed Lines Correspond to First and Second Modes, Respectively.
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