# Notations R

*ABCDEFGHIJKLMNOPQ♦R♦STUVWXYZ
$\mathbb{R}$
real line; Common Notations and Definitions
$\Re{}$
real part; 1.9.2
$r(\NVar{n})$
Schröder number; 26.6.4
$\mathop{r_{\NVar{k}}\/}\nolimits\!\left(\NVar{n}\right)$
number of squares; §27.13(iv)
$\mathop{R^{(\NVar{\alpha})}_{\NVar{m},\NVar{n}}\/}\nolimits\!\left(\NVar{z}\right)$
disk polynomial; 18.37.1
$\mathop{r_{\mathrm{tp}}\/}\nolimits\!\left(\NVar{\epsilon},\NVar{\ell}\right)$
outer turning point for Coulomb functions; 33.14.3
$\mathop{\rho_{\mathrm{tp}}\/}\nolimits\!\left(\NVar{\eta},\NVar{\ell}\right)$
outer turning point for Coulomb radial functions; 33.2.2
$\mathop{R_{\NVar{-a}}\/}\nolimits\!\left(\NVar{b_{1}},\dots,\NVar{b_{n}};\NVar% {z_{1}},\dots,\NVar{z_{n}}\right)$ or $\mathop{R_{\NVar{-a}}\/}\nolimits\!\left(\NVar{\mathbf{b}};\NVar{\mathbf{z}}\right)$
multivariate hypergeometric function; 19.16.9
$R_{\NVar{mn}}^{(\NVar{j})}(\NVar{\gamma},\NVar{z})=\mathop{S^{m(j)}_{n}\/}% \nolimits\!\left(z,\gamma\right)$
alternative notation for the radial spheroidal wave function; §30.1
$R(\NVar{a};\NVar{\mathbf{b}};\NVar{\mathbf{z}})=\mathop{R_{-a}\/}\nolimits\!% \left(\mathbf{b};\mathbf{z}\right)$
alternative notation; §19.16(ii)
$\mathop{R_{\NVar{n}}\/}\nolimits\!\left(\NVar{x};\NVar{\gamma},\NVar{\delta},% \NVar{N}\right)$
dual Hahn polynomial; Table 18.25.1
$\mathop{R_{\NVar{n}}\/}\nolimits\!\left(\NVar{x};\NVar{\alpha},\NVar{\beta},% \NVar{\gamma},\NVar{\delta}\right)$
Racah polynomial; Table 18.25.1
$\mathop{R_{\NVar{n}}\/}\nolimits\!\left(\NVar{x};\NVar{\alpha},\NVar{\beta},% \NVar{\gamma},\NVar{\delta}\,|\,\NVar{q}\right)$
$q$-Racah polynomial; 18.28.19
$\mathop{R_{C}\/}\nolimits\!\left(\NVar{x},\NVar{y}\right)$
Carlson’s combination of inverse circular and inverse hyperbolic functions; 19.2.17
$\mathop{R_{D}\/}\nolimits\!\left(\NVar{x},\NVar{y},\NVar{z}\right)$
elliptic integral symmetric in only two variables; 19.16.5
$\Residue$
residue; §1.10(iii)
$\mathop{R_{F}\/}\nolimits\!\left(\NVar{x},\NVar{y},\NVar{z}\right)$
symmetric elliptic integral of first kind; 19.16.1
$\mathop{R_{G}\/}\nolimits\!\left(\NVar{x},\NVar{y},\NVar{z}\right)$
symmetric elliptic integral of second kind; 19.16.3
$\mathop{R_{J}\/}\nolimits\!\left(\NVar{x},\NVar{y},\NVar{z},\NVar{p}\right)$
symmetric elliptic integral of third kind; 19.16.2