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Introduction
G = (V,E)

@ vertex set V is finite
@ edges E C {uv : u,veV}
@ undirected



Introduction

Example 1: Modularity in gene co-expression networks

@ vertices represent genes
@ uv € E if expression of gene u has high correlation with
expression of gene v

FIng Fe. Carlson, Zhang, Fang, Mischel, Howrvath, and Nelson. Gene connectivity, function, and sequence

conservation: predictions from modular yeast co-expression networks, BMC Genomics 2006, 7:40.
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Modularity in gene co-expression networks




Introduction

Cohesive subgraphs: Completeness and cliques

N4

Figure: w(G):= max cardinality of a clique

All vertex pairs are adjacent (restrictive).



Introduction

Cohesive subgraphs: k-plexes

N4

Figure: wi(G):= max cardinality of a k-plex

User-defined level of mutual adjacency (a relaxation).



Introduction

A general notion of graph cohesion

Definition (Seidman and Foster 1978)
Fix an integer k > 1. K C V is a k-plex if

deggik)(v) > |K[ — k forall veK.

@ 1-plexes are complete graphs

@ k-plexes relax the structure of complete graphs



Introduction

Example 2: Social Networks

@ vertices are people
@ edges represent specific types of relations or interdependencies

values

financial exchange
friendship or kinship
conflict

disease transmission

¢ © @ ¢ ¢

Moody, James, and Douglas R. White (2003). "Structural Cohesion and Embeddedness: A Hierarchical Concept of

Social Groups.” American Sociological Review 68(1):103-127.
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Social Networks
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Other relaxations: k-club




Introduction

k-plexes

N

Figure: wy(G):= max cardinality of a 2-plex



Introduction

Example 3: Retail location

A successful company plans to open many new outlets.

@ vertices represent potential locations

@ research indicates that stores closer than x miles will compete
for customers (market cannibalism)

@ uv € E if location u is within x miles of location v
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Retail location




Introduction

Stable sets

All vertex pairs are non-adjacent.
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Co-k-plexes

User-defined level of non-adjacency (a relaxation).



Introduction
Definition

Definition (Seidman and Foster 1978)

Fix an integer k > 1. S C V is a co-k-plex if

deggis)(v) < k—1 forall ves.

@ co-1-plexes are isolated vertices (stable sets)

@ co-k-plexes are degree-bounded subgraphs
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Cohesion and sparsity

Detecting cohesive subgraphs (k-plexes) is computationally
equivalent to detecting sparse subgraphs (co-k-plexes).

Why?
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Cohesive in G...

Figure: G = (V,E)
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...Is sparse in G

Figure: G = (V,E), whereec E<= e ¢ E.
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Previous Work

@ Seidman and Foster (1978)

o introduced k-plexes in context of social network analysis
o derived basic properties

@ Balasundaram, Butenko, Hicks, and Sachdeva (2006)

o established NP-completeness of Maximum k-plex
@ studied the k-plex polytope
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Bounds

Upper bound on the size of cohesive subgraphs

K S
O 00
Coo
o
If K C Vis complete and S C V is a stable set, then

KNS|<1.

Consequently, if V partitions into stable sets 51, ..., S, then

m m
Kl=|KNV[=IKN(ULS) =D IKNS|<> 1=m.
i=1 i=1



Bounds
Graph coloring and the chromatic number

Figure: w(G) < x(G)



Bounds
Analogously...

If K C V is a k-plex (cohesive) and
S C V' is a co-k-plex (sparse), then

|IKNS| <2k —2+k mod 2.

Consequently, if V partitions into co-k-plexes Si, ..., S, then

K| =K N (UZS)| =) |KNSi| < m(2k =2+ k mod 2).
i=1



Bounds

Co-k-plex coloring and the co-k-plex chromatic number

Figure: wz(G) < x2(G)



Bounds

Com pUtationaI ReSU |t5 (2.2 GHz Dual-Core AMD Opteron processor with 3 GB of memory)

Table: Coloring Results

G x2(G) seconds x3(G) seconds x4(G) seconds
brock200-1 83 0.1 139 0.1 167 0.0
brock400-2 152 0.7 272 0.1 320 0.2
brock800-2 224 1.7 400 2.6 535 1.6
c-fat200-1 15 0.0 20 0.0 21 0.0
c-fat500-1 22 0.1 23 0.0 24 0.0
C125.9 84 0.0 116 0.0 122 0.0
hamming6-2 32* 0.0 59 0.0 61 0.0
hamming8-2 128* 0.1 231 0.1 251 0.1
johnson8-2-4 10 0.0 18 0.0 19 0.0
johnson16-2-4 34 0.0 76 0.0 95 0.0
johnson32-2-4 75 1.0 224 0.5 299 0.3
keller4 44 0.1 90 0.0 111 0.0
MANN-a9 37 0.0 42 0.0 45 0.0
p-hat300-1 35 0.0 63 0.0 89 0.0
p-hat700-1 68 0.4 124 0.3 169 0.5
p-hat1500-1 125 4.0 230 6.3 326 4.4
san200-0.7-2 57 0.0 113 0.0 144 0.1

*

optimal



Bounds

Lower bound on the size of cohesive subgraphs

If we can find a k-plex K C V, then
K| < wi(G).

For a lower bound, use local search to find feasible k-plexes.
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Com pUtationaI ReSU |t5 (2.2 GHz Dual-Core AMD Opteron processor with 3 GB of memory)

Table: Lower Bound Results

G w2(G) seconds w3(G) seconds w4(G)  seconds
brock200-1 25 1 27 1 31 1
brock400-2 27 2 31 2 35 2
brock800-2 22 15 26 15 29 15
c-fat200-1 12* 2 12* 2 12* 2
c-fat500-1 14* 20 14* 19 14* 19
C125.9 42 0 47 0 54 0
hamming6-2 32% 0 32* 0 32 0
hamming8-2 128* 0 128* 0 128 0
johnson8-2-4 4 0 8* 0 9* 0
johnson16-2-4 8 0 16 0 18 0
johnson32-2-4 16 2 32 2 36 2
keller4 15* 1 18 1 20 1
MANN-a9 22 0 30 0 36 0
p-hat300-1 9 4 11 4 12 4
p-hat700-1 10 33 13 33 16 32
p-hat1500-1 13 202 14 204 16 204
san200-0.7-2 26 1 36 1 48 1

*

optimal
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Exact Algorithms

Max k-plex Algorithm: Type 1%

o Vi={wv,..., vy}
o Si={vi,..,vptfor1<i<n

fori:1ton
Search §; for largest k-plex containing v;.
end

*Applegate and Johnson; Carraghan and Pardalos



Exact Algorithms

Max k-plex Algorithm: Type 1




Exact Algorithms

Max k-plex Algorithm: Type 1

Figure: U={ve V\K : KU{v} is a k-plex}.



Exact Algorithms

Max k-plex Algorithm: Type 1

Figure: U={ve V\K : KU{v} is a k-plex}.



Exact Algorithms

Com pUtationaI ReSU |t5 (2.2 GHz Dual-Core AMD Opteron processor with 3 GB of memory)

Table: k-plex1 Results

G w2(G) seconds w3(G) seconds ws(G)  seconds
brock200-1 25 - 28 - 31 -
brock400-2 27 - 31 - 35 -
brock800-2 22 - 26 - 29 -
c-fat200-1 12 2 12 12 12 378
c-fat500-1 14 24 14 393 14 -
C125.9 42 - 49 - 56 -
hamming6-2 32 0 32 - 36 -
hamming8-2 128 1 128 - 128 -
johnson8-2-4 5 0 8 0 9 1
johnson16-2-4 10 - 16 - 18 -
johnson32-2-4 21 - 32 - 36 -
keller4 15 - 19 - 22 -
MANN-a9 26 103 36 4 36 592
p-hat300-1 10 107 12 - 14 -
p-hat700-1 12 - 13 - 16 -
p-hat1500-1 13 - 14 - 16 -
san200-0.7-2 26 - 36 - 48 -

- exceeded 3600 second time limit



Max k-plex Algorithm: Type 2*

o Vi={wv,...,vp}
o Sii={vi,..,vptfor1<i<n
o Ck(i) = wk(G[S;])

fori:(n—1)tol
Search §; for largest k-plex containing v;.
ck(i) € {ek(i+ 1), c(i + 1) + 1}.

end

* 6sterg§ rd



Exact Algorithms

Max k-plex Algorithm: Type 2

Figure: j:=min{i : v; e U}; U CS5; = wi(G[U]) < c()).



Exact Algorithms

Com pUtationaI ReSU |t5 (2.2 GHz Dual-Core AMD Opteron processor with 3 GB of memory)

Table: k-plex2 Results

G w2 (G) sec. w3(G) sec. w4(G)  sec.
brock200-1 23 - 24 - 26 -
brock400-2 22 - 23 - 23 -
brock800-2 18 - 20 - 21 -
c-fat200-1 12 0 12 0 12 18
c-fat500-1 14 0 14 8 14 1234
C125.9 34 - 37 - 39 -
hamming6-2 32 0 32 1 40 951
hamming8-2 128 1 102 - 44 -
johnson8-2-4 5 0 8 0 9 0
johnsonl6-2-4 10 - 15 - 18 -
johnson32-2-4 21 - 24 - 25 -
keller4 15 913 21 - 16 -
MANN-a9 26 0 36 2 36 141
p-hat300-1 10 5 12 416 13 -
p-hat700-1 13 383 13 - 13 -
p-hat1500-1 12 - 14 - 13 -
san200-0.7-2 24 - 34 - 46 -

- exceeded 3600 second time limit



Exact Algorithms

k-plex2 wins

Table: Results Summary

Algorithm k=2 k=3 k=4 Total
k-plex1-noBounds 13 8 5 26
k-plex1 16 7 5 28

k-plex2 19 14 11 44
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Linear Systems

Linear inequalities

Let G=(V,E),SCV,and n=|V]|.

Consider the n-dimensional binary vector x° where x> =1ifve S
and x2 = 0 otherwise.

Represent the stable set S = {vi,v3} as x° = [1,0,1,0,0]".



Linear Systems

Linear inequalities

K S
C 00O
oo
@)

If S C Vis a stable set and K C V is complete in G, then
S
veK

is a valid inequality.



Linear Systems

Polyhedra and linear programming

Each valid inequality defines a halfspace in R".

The intersection of all such halfspaces defines the polytope

P:={xeR" : Ax < b}.

The linear program

maXyxcp § Xy

veVv

determines the largest stable set in G.



Linear Systems

Analogously...

Inequalities for co-k-plexes define the co-k-plex polytope

Pr:={x€R" : Ax < b}.

The linear program

maXyep § Xy

veVv

determines the largest co-k-plex in G.



Linear Systems

Defining Py

Definition
A facet is a valid inequality which must be present in any linear
defining system Ax < b (necessity).

The facets together form a defining system (sufficiency).

We focused on finding facets for the co-2-plex polytope.

Co-2-plexes are subgraphs with degree at most one.



Linear Systems
2-plexes

Theorem (McClosky and Hicks, Balasundaram et al.)

If K is a maximal 2-plex in G such that |K| > 2, then

Zx\,§2

is a facet for P>(G).




Linear Systems
Cycles

Theorem (McClosky and Hicks)

If C" is a chordless cycle such that n > 4 and n % 0 mod 3, then

is a facet for P(C").




Definition
For fixed integers n > 1and p, 1 < p < |4],
the web W(n, p) has vertices V = {1,...,n} and edges

E={(i,j))|j=i+py,i+n—p; YVieV}

Figure: W(8,3)



Linear Systems
Web, cont.

Theorem (McClosky and Hicks)

If gcd(n,p+1)=1 and p < |§], then

Y. x<p+l

veV(W(n,p))

is a facet for P,(W(n, p)).
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Conclusions

Summary

@ Algorithmic
@ co-k-plex coloring
@ k-plex heuristics
¢ exact algorithms
@ Polyhedral
@ linear description of the co-2-plex polytope



Conclusions

Future Work: Algorithmic

@ exact co-k-plex coloring

@ k-plex heuristics



Conclusions

Future Work: Polyhedral

@ find facets for co-k-plex polyhedra (k > 3)

@ computational study on facets we found
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Questions
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