Digital Library of Mathematical Functions
About the Project
NIST
20 Theta FunctionsProperties

§20.10 Integrals

Contents

§20.10(i) Mellin Transforms with respect to the Lattice Parameter

Let s be a constant such that s>2. Then

20.10.1 0xs-1θ2(0|x2)x=2s(1-2-s)π-s/2Γ(12s)ζ(s),
20.10.2 0xs-1(θ3(0|x2)-1)x=π-s/2Γ(12s)ζ(s),
20.10.3 0xs-1(1-θ4(0|x2))x=(1-21-s)π-s/2Γ(12s)ζ(s).

Here ζ(s) again denotes the Riemann zeta function (§25.2).

For further results see Oberhettinger (1974, pp. 157–159).

§20.10(ii) Laplace Transforms with respect to the Lattice Parameter

Let s, , and β be constants such that s>0, >0, and sinh|β|. Then

20.10.4 0-stθ1(βπ2|πt2)t=0-stθ2((1+β)π2|πt2)t=-ssinh(βs)sech(s),
20.10.5 0-stθ3((1+β)π2|πt2)t=0-stθ4(βπ2|πt2)t=scosh(βs)csch(s).

For corresponding results for argument derivatives of the theta functions see Erdélyi et al. (1954a, pp. 224–225) or Oberhettinger and Badii (1973, p. 193).

§20.10(iii) Compendia

For further integrals of theta functions see Erdélyi et al. (1954a, pp. 61–62 and 339), Prudnikov et al. (1990, pp. 356–358), Prudnikov et al. (1992a, §3.41), and Gradshteyn and Ryzhik (2000, pp. 627–628).