# §18.41 Tables

## §18.41(i) Polynomials

For $\mathop{P_{n}\/}\nolimits\!\left(x\right)$ ($=\mathop{\mathsf{P}_{n}\/}\nolimits\!\left(x\right)$) see §14.33.

Abramowitz and Stegun (1964, Tables 22.4, 22.6, 22.11, and 22.13) tabulates $\mathop{T_{n}\/}\nolimits\!\left(x\right)$, $\mathop{U_{n}\/}\nolimits\!\left(x\right)$, $\mathop{L_{n}\/}\nolimits\!\left(x\right)$, and $\mathop{H_{n}\/}\nolimits\!\left(x\right)$ for $n=0(1)12$. The ranges of $x$ are $0.2(.2)1$ for $\mathop{T_{n}\/}\nolimits\!\left(x\right)$ and $\mathop{U_{n}\/}\nolimits\!\left(x\right)$, and $0.5,1,3,5,10$ for $\mathop{L_{n}\/}\nolimits\!\left(x\right)$ and $\mathop{H_{n}\/}\nolimits\!\left(x\right)$. The precision is 10D, except for $\mathop{H_{n}\/}\nolimits\!\left(x\right)$ which is 6-11S.

## §18.41(ii) Zeros

For $\mathop{P_{n}\/}\nolimits\!\left(x\right)$, $\mathop{L_{n}\/}\nolimits\!\left(x\right)$, and $\mathop{H_{n}\/}\nolimits\!\left(x\right)$ see §3.5(v). See also Abramowitz and Stegun (1964, Tables 25.4, 25.9, and 25.10).

## §18.41(iii) Other Tables

For tables prior to 1961 see Fletcher et al. (1962) and Lebedev and Fedorova (1960).