# §11.14 Tables

## §11.14(i) Introduction

For tables before 1961 see Fletcher et al. (1962) and Lebedev and Fedorova (1960). Tables listed in these Indices are omitted from the subsections that follow.

## §11.14(ii) Struve Functions

• Abramowitz and Stegun (1964, Chapter 12) tabulates $\mathop{\mathbf{H}_{n}\/}\nolimits\!\left(x\right)$, $\mathop{\mathbf{H}_{n}\/}\nolimits\!\left(x\right)-\mathop{Y_{n}\/}\nolimits\!% \left(x\right)$, and $\mathop{I_{n}\/}\nolimits\!\left(x\right)-\mathop{\mathbf{L}_{n}\/}\nolimits\!% \left(x\right)$ for $n=0,1$ and $x=0(.1)5$, $x^{-1}=0(.01)0.2$ to 6D or 7D.

• Agrest et al. (1982) tabulates $\mathop{\mathbf{H}_{n}\/}\nolimits\!\left(x\right)$ and $e^{-x}\mathop{\mathbf{L}_{n}\/}\nolimits\!\left(x\right)$ for $n=0,1$ and $x=0(.001)5(.005)15(.01)100$ to 11D.

• Barrett (1964) tabulates $\mathop{\mathbf{L}_{n}\/}\nolimits\!\left(x\right)$ for $n=0,1$ and $x=0.2(.005)4(.05)10(.1)19.2$ to 5 or 6S, $x=6(.25)59.5(.5)100$ to 2S.

• Zanovello (1975) tabulates $\mathop{\mathbf{H}_{n}\/}\nolimits\!\left(x\right)$ for $n=-4(1)15$ and $x=0.5(.5)26$ to 8D or 9S.

• Zhang and Jin (1996) tabulates $\mathop{\mathbf{H}_{n}\/}\nolimits\!\left(x\right)$ and $\mathop{\mathbf{L}_{n}\/}\nolimits\!\left(x\right)$ for $n=-4(1)3$ and $x=0(1)20$ to 8D or 7S.

## §11.14(iii) Integrals

• Abramowitz and Stegun (1964, Chapter 12) tabulates $\int_{0}^{x}(\mathop{I_{0}\/}\nolimits\!\left(t\right)-\mathop{\mathbf{L}_{0}% \/}\nolimits\!\left(t\right))\mathrm{d}t$ and $(2/\pi)\int_{x}^{\infty}t^{-1}\mathop{\mathbf{H}_{0}\/}\nolimits\!\left(t% \right)\mathrm{d}t$ for $x=0(.1)5$ to 5D or 7D; $\int_{0}^{x}(\mathop{\mathbf{H}_{0}\/}\nolimits\!\left(t\right)-\mathop{Y_{0}% \/}\nolimits\!\left(t\right))\mathrm{d}t-(2/\pi)\mathop{\ln\/}\nolimits x$, $\int_{0}^{x}(\mathop{I_{0}\/}\nolimits\!\left(t\right)-\mathop{\mathbf{L}_{0}% \/}\nolimits\!\left(t\right))\mathrm{d}t-(2/\pi)\mathop{\ln\/}\nolimits x$, and $\int_{x}^{\infty}t^{-1}(\mathop{\mathbf{H}_{0}\/}\nolimits\!\left(t\right)-% \mathop{Y_{0}\/}\nolimits\!\left(t\right))\mathrm{d}t$ for $x^{-1}=0(.01)0.2$ to 6D.

• Agrest et al. (1982) tabulates $\int_{0}^{x}\mathop{\mathbf{H}_{0}\/}\nolimits\!\left(t\right)\mathrm{d}t$ and $e^{-x}\int_{0}^{x}\mathop{\mathbf{L}_{0}\/}\nolimits\!\left(t\right)\mathrm{d}t$ for $x=0(.001)5(.005)15(.01)100$ to 11D.

## §11.14(iv) Anger–Weber Functions

• Bernard and Ishimaru (1962) tabulates $\mathop{\mathbf{J}_{\nu}\/}\nolimits\!\left(x\right)$ and $\mathop{\mathbf{E}_{\nu}\/}\nolimits\!\left(x\right)$ for $\nu=-10(.1)10$ and $x=0(.1)10$ to 5D.

• Jahnke and Emde (1945) tabulates $\mathop{\mathbf{E}_{n}\/}\nolimits\!\left(x\right)$ for $n=1,2$ and $x=0(.01)14.99$ to 4D.

## §11.14(v) Incomplete Functions

• Agrest and Maksimov (1971, Chapter 11) defines incomplete Struve, Anger, and Weber functions and includes tables of an incomplete Struve function $\mathop{\mathbf{H}_{n}\/}\nolimits\!\left(x,\alpha\right)$ for $n=0,1$, $x=0(.2)10$, and $\alpha=0(.2)1.4,\tfrac{1}{2}\pi$, together with surface plots.