# §11.1 Special Notation

(For other notation see Notation for the Special Functions.)

$x$ real variable. complex variable. real or complex order. integer order. nonnegative integer. arbitrary small positive constant.

Unless indicated otherwise, primes denote derivatives with respect to the argument. For the functions $\mathop{J_{\nu}\/}\nolimits\!\left(z\right)$, $\mathop{Y_{\nu}\/}\nolimits\!\left(z\right)$, $\mathop{{H^{(1)}_{\nu}}\/}\nolimits\!\left(z\right)$, $\mathop{{H^{(2)}_{\nu}}\/}\nolimits\!\left(z\right)$, $\mathop{I_{\nu}\/}\nolimits\!\left(z\right)$, and $\mathop{K_{\nu}\/}\nolimits\!\left(z\right)$ see §§10.2(ii), 10.25(ii).

The functions treated in this chapter are the Struve functions $\mathop{\mathbf{H}_{\nu}\/}\nolimits\!\left(z\right)$ and $\mathop{\mathbf{K}_{\nu}\/}\nolimits\!\left(z\right)$, the modified Struve functions $\mathop{\mathbf{L}_{\nu}\/}\nolimits\!\left(z\right)$ and $\mathop{\mathbf{M}_{\nu}\/}\nolimits\!\left(z\right)$, the Lommel functions $\mathop{s_{{\mu},{\nu}}\/}\nolimits\!\left(z\right)$ and $\mathop{S_{{\mu},{\nu}}\/}\nolimits\!\left(z\right)$, the Anger function $\mathop{\mathbf{J}_{\nu}\/}\nolimits\!\left(z\right)$, the Weber function $\mathop{\mathbf{E}_{\nu}\/}\nolimits\!\left(z\right)$, and the associated Anger–Weber function $\mathop{\mathbf{A}_{\nu}\/}\nolimits\!\left(z\right)$.